{"title":"3D topological models and Heegaard splitting. II. Pontryagin duality and observables","authors":"F. Thuillier","doi":"10.1063/5.0027779","DOIUrl":null,"url":null,"abstract":"In a previous article, a construction of the smooth Deligne-Beilinson cohomology groups $H^p_D(M)$ on a closed $3$-manifold $M$ represented by a Heegaard splitting $X_L \\cup_f X_R$ was presented. Then, a determination of the partition functions of the $U(1)$ Chern-Simons and BF Quantum Field theories was deduced from this construction. In this second and concluding article we stay in the context of a Heegaard spitting of $M$ to define Deligne-Beilinson $1$-currents whose equivalent classes form the elements of $H^1_D(M)^\\star$, the Pontryagin dual of $H^1_D(M)$. Finally, we use singular fields to first recover the partition functions of the $U(1)$ Chern-Simons and BF quantum field theories, and next to determine the link invariants defined by these theories. The difference between the use of smooth and singular fields is also discussed.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0027779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In a previous article, a construction of the smooth Deligne-Beilinson cohomology groups $H^p_D(M)$ on a closed $3$-manifold $M$ represented by a Heegaard splitting $X_L \cup_f X_R$ was presented. Then, a determination of the partition functions of the $U(1)$ Chern-Simons and BF Quantum Field theories was deduced from this construction. In this second and concluding article we stay in the context of a Heegaard spitting of $M$ to define Deligne-Beilinson $1$-currents whose equivalent classes form the elements of $H^1_D(M)^\star$, the Pontryagin dual of $H^1_D(M)$. Finally, we use singular fields to first recover the partition functions of the $U(1)$ Chern-Simons and BF quantum field theories, and next to determine the link invariants defined by these theories. The difference between the use of smooth and singular fields is also discussed.