Hamiltonian systems, Toda lattices, solitons, Lax pairs on weighted Z-graded graphs

Gamal Mograby, Maxim S. Derevyagin, G. Dunne, A. Teplyaev
{"title":"Hamiltonian systems, Toda lattices, solitons, Lax pairs on weighted Z-graded graphs","authors":"Gamal Mograby, Maxim S. Derevyagin, G. Dunne, A. Teplyaev","doi":"10.1063/5.0025475","DOIUrl":null,"url":null,"abstract":"We consider discrete one dimensional nonlinear equations and present the procedure of lifting them to Z-graded graphs. We identify conditions which allow one to lift one dimensional solutions to solutions on graphs. In particular, we prove the existence of solitons {for static potentials} on graded fractal graphs. We also show that even for a simple example of a topologically interesting graph the corresponding non-trivial Lax pairs and associated unitary transformations do not lift to a Lax pair on the Z-graded graph.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0025475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We consider discrete one dimensional nonlinear equations and present the procedure of lifting them to Z-graded graphs. We identify conditions which allow one to lift one dimensional solutions to solutions on graphs. In particular, we prove the existence of solitons {for static potentials} on graded fractal graphs. We also show that even for a simple example of a topologically interesting graph the corresponding non-trivial Lax pairs and associated unitary transformations do not lift to a Lax pair on the Z-graded graph.
哈密顿系统,Toda格,孤子,加权z级图上的Lax对
考虑离散的一维非线性方程,给出了将其提升为z级图的过程。我们确定了允许将一维解提升到图上解的条件。特别地,我们证明了分形图上静态势孤子的存在性。我们还证明,即使对于一个简单的拓扑有趣图的例子,相应的非平凡Lax对和相关的幺正变换也不会提升到z梯度图上的Lax对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信