Energy cutoff, effective theories, noncommutativity, fuzzyness: the case of $O(D)$-covariant fuzzy spheres

G. Fiore, F. Pisacane
{"title":"Energy cutoff, effective theories, noncommutativity, fuzzyness: the case of $O(D)$-covariant fuzzy spheres","authors":"G. Fiore, F. Pisacane","doi":"10.22323/1.376.0208","DOIUrl":null,"url":null,"abstract":"Projecting a quantum theory onto the Hilbert subspace of states with energies below a cutoff $\\overline{E}$ may lead to an effective theory with modified observables, including a noncommutative space(time). Adding a confining potential well $V$ with a very sharp minimum on a submanifold $N$ of the original space(time) $M$ may induce a dimensional reduction to a noncommutative quantum theory on $N$. Here in particular we briefly report on our application of this procedure to spheres $S^d\\subset\\mathbb{R}^D$ of radius $r=1$ ($D=d\\!+\\!1>1$): making $\\overline{E}$ and the depth of the well depend on (and diverge with) $\\Lambda\\in\\mathbb{N}$ we obtain new fuzzy spheres $S^d_{\\Lambda}$ covariant under the {\\it full} orthogonal groups $O(D)$; the commutators of the coordinates depend only on the angular momentum, as in Snyder noncommutative spaces. Focusing on $d=1,2$, we also discuss uncertainty relations, localization of states, diagonalization of the space coordinates and construction of coherent states. As $\\Lambda\\to\\infty$ the Hilbert space dimension diverges, $S^d_{\\Lambda}\\to S^d$, and we recover ordinary quantum mechanics on $S^d$. These models might be suggestive for effective models in quantum field theory, quantum gravity or condensed matter physics.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.376.0208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Projecting a quantum theory onto the Hilbert subspace of states with energies below a cutoff $\overline{E}$ may lead to an effective theory with modified observables, including a noncommutative space(time). Adding a confining potential well $V$ with a very sharp minimum on a submanifold $N$ of the original space(time) $M$ may induce a dimensional reduction to a noncommutative quantum theory on $N$. Here in particular we briefly report on our application of this procedure to spheres $S^d\subset\mathbb{R}^D$ of radius $r=1$ ($D=d\!+\!1>1$): making $\overline{E}$ and the depth of the well depend on (and diverge with) $\Lambda\in\mathbb{N}$ we obtain new fuzzy spheres $S^d_{\Lambda}$ covariant under the {\it full} orthogonal groups $O(D)$; the commutators of the coordinates depend only on the angular momentum, as in Snyder noncommutative spaces. Focusing on $d=1,2$, we also discuss uncertainty relations, localization of states, diagonalization of the space coordinates and construction of coherent states. As $\Lambda\to\infty$ the Hilbert space dimension diverges, $S^d_{\Lambda}\to S^d$, and we recover ordinary quantum mechanics on $S^d$. These models might be suggestive for effective models in quantum field theory, quantum gravity or condensed matter physics.
能量截断,有效理论,非交换性,模糊性:$O(D)$协变模糊球的情况
将量子理论投射到希尔伯特状态的子空间上,其能量低于截断$\overline{E}$,可能会导致具有修改可观测值的有效理论,包括非交换空间(时间)。在原空间(时间)$M$的子流形$N$上添加一个极小值非常明显的限制势阱$V$,可能会导致$N$上的非对易量子理论的降维。在这里,我们特别简要地报告了我们对半径为$r=1$ ($D=d\!+\!1>1$)的球体$S^d\subset\mathbb{R}^D$的应用:使$\overline{E}$和井深依赖于(并发散于)$\Lambda\in\mathbb{N}$,我们得到了新的模糊球体$S^d_{\Lambda}$在{\it全}正交群下协变$O(D)$;坐标系的对易子只依赖于角动量,就像在Snyder非对易空间中一样。以$d=1,2$为中心,我们还讨论了不确定性关系、状态的局部化、空间坐标的对角化和相干状态的构建。当$\Lambda\to\infty$希尔伯特空间维度发散,$S^d_{\Lambda}\to S^d$,我们在$S^d$上恢复了普通的量子力学。这些模型可能对量子场论、量子引力或凝聚态物理中的有效模型有所启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信