Asymptotics for Averages over Classical Orthogonal Ensembles

T. Claeys, Gabriel Glesner, A. Minakov, Meng Yang
{"title":"Asymptotics for Averages over Classical Orthogonal Ensembles","authors":"T. Claeys, Gabriel Glesner, A. Minakov, Meng Yang","doi":"10.1093/IMRN/RNAA354","DOIUrl":null,"url":null,"abstract":"We study averages of multiplicative eigenvalue statistics in ensembles of orthogonal Haar distributed matrices, which can alternatively be written as Toeplitz+Hankel determinants. We obtain new asymptotics for symbols with Fisher-Hartwig singularities in cases where some of the singularities merge together, and for symbols with a gap or an emerging gap. We obtain these asymptotics by relying on known analogous results in the unitary group and on asymptotics for associated orthogonal polynomials on the unit circle. As consequences of our results, we derive asymptotics for gap probabilities in the Circular Orthogonal and Symplectic Ensembles, and an upper bound for the global eigenvalue rigidity in the orthogonal ensembles.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAA354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We study averages of multiplicative eigenvalue statistics in ensembles of orthogonal Haar distributed matrices, which can alternatively be written as Toeplitz+Hankel determinants. We obtain new asymptotics for symbols with Fisher-Hartwig singularities in cases where some of the singularities merge together, and for symbols with a gap or an emerging gap. We obtain these asymptotics by relying on known analogous results in the unitary group and on asymptotics for associated orthogonal polynomials on the unit circle. As consequences of our results, we derive asymptotics for gap probabilities in the Circular Orthogonal and Symplectic Ensembles, and an upper bound for the global eigenvalue rigidity in the orthogonal ensembles.
经典正交综上均值的渐近性
我们研究了正交Haar分布矩阵集合中乘法特征值统计量的平均值,它可以被写成Toeplitz+Hankel行列式。对于具有Fisher-Hartwig奇点的符号,在一些奇点合并的情况下,以及具有间隙或出现间隙的符号,我们得到了新的渐近性。我们利用酉群上已知的类似结果和单位圆上相关正交多项式的渐近性得到了这些渐近性。作为我们的结果的结果,我们导出了圆正交系综和辛系综中间隙概率的渐近性,以及正交系综中全局特征值刚性的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信