{"title":"Overgroups of Levi subgroups I. The case of abelian unipotent radical","authors":"P. Gvozdevsky","doi":"10.1090/spmj/1631","DOIUrl":"https://doi.org/10.1090/spmj/1631","url":null,"abstract":"In the present paper we prove sandwich classification for the overgroups of the subsystem subgroup $E(Delta,R)$ of the Chevalley group $G(Phi,R)$ for the three types of pair $(Phi,Delta)$ (the root system and its subsystem) such that the group $G(Delta,R)$ is (up to torus) a Levi subgroup of the parabolic subgroup with abelian unipotent radical. Namely we show that for any such an overgroup $H$ there exists a unique pair of ideals $sigma$ of the ring $R$ such that $E(Phi,Delta,R,sigma)le Hle N_{G(Phi,R)}(E(Phi,Delta,R,sigma))$.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87614947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Torsion-free abelian groups revisited","authors":"P. Schultz","doi":"10.4171/rsmup/67","DOIUrl":"https://doi.org/10.4171/rsmup/67","url":null,"abstract":"Let G be a torsion--free abelian group of finite rank. The automorphism group Aut(G) acts on the set of maximal independent subsets of G. The orbits of this action are the isomorphism classes of indecomposable decompositions of G. G contains a direct sum of strongly indecomposable groups as a characteristic subgroup of finite index, giving rise to a classification of finite rank strongly indecomposable torsion--free abelian groups.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75947421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Braun, C. Crotwell, A. Liu, P. Weston, D. Yetter
{"title":"Factorizations of surjective maps of connected quandles","authors":"T. Braun, C. Crotwell, A. Liu, P. Weston, D. Yetter","doi":"10.2140/INVOLVE.2021.14.53","DOIUrl":"https://doi.org/10.2140/INVOLVE.2021.14.53","url":null,"abstract":"We consider the problem of when one quandle homomorphism will factor through another, restricting our attention to the case where all quandles involved are connected. We provide a complete solution to the problem for surjective quandle homomorphisms using the structure theorem for connected quandles of Ehrman et al. (2008) and the factorization system for surjective quandle homomorphsims of Bunch et al. (2010) as our primary tools. The paper contains the substantive results obtained by an REU research group consisting of the first four authors under the mentorship of the fifth, and was supported by National Science Foundation, grant DMS-1659123.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79439031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"WWPD elements of big mapping class groups","authors":"Alexander J. Rasmussen","doi":"10.4171/ggd/613","DOIUrl":"https://doi.org/10.4171/ggd/613","url":null,"abstract":"We study mapping class groups of infinite type surfaces with isolated punctures and their actions on the loop graphs introduced by Bavard-Walker. We classify all of the mapping classes in these actions which are loxodromic with a WWPD action on the corresponding loop graph. The WWPD property is a weakening of Bestvina-Fujiwara's weak proper discontinuity and is useful for constructing non-trivial quasimorphisms. We use this classification to give a sufficient criterion for subgroups of big mapping class groups to have infinite-dimensional second bounded cohomology and use this criterion to give simple proofs that certain natural subgroups of big mapping class groups have infinite-dimensional second bounded cohomology.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76247946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Minimal Disc Diagrams of 5 / 9 -Simplicial Complexes","authors":"I. Lazăr","doi":"10.1307/mmj/1585706557","DOIUrl":"https://doi.org/10.1307/mmj/1585706557","url":null,"abstract":"We introduce and study a local combinatorial condition, called the 5/9-condition, on a simplicial complex, implying Gromov hyperbolicity of its universal cover. We hereby give an application of another combinatorial condition, called 8-location, introduced by Damian Osajda. Along the way we prove the minimal filling diagram lemma for 5/9-complexes.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73012747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Most words are geometrically almost uniform","authors":"M. Larsen","doi":"10.2140/ant.2020.14.2185","DOIUrl":"https://doi.org/10.2140/ant.2020.14.2185","url":null,"abstract":"If w is a word in d>1 letters and G is a finite group, evaluation of w on a uniformly randomly chosen d-tuple in G gives a random variable with values in G, which may or may not be uniform. It is known that if G ranges over finite simple groups of given root system and characteristic, a positive proportion of words w give a distribution which approaches uniformity in the limit as |G| goes to infinity. In this paper, we show that the proportion is in fact 1.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75211210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Endomorphism Semigroups of Extra-special $p$-groups and Automorphism Orbits.","authors":"C. Kumar, S. Pradhan","doi":"10.22108/IJGT.2021.129815.1708","DOIUrl":"https://doi.org/10.22108/IJGT.2021.129815.1708","url":null,"abstract":"For an odd prime $p$ and a positive integer $n$, it is well known that there are two types of extra-special $p$-groups of order $p^{2n+1}$, first one is the Heisenberg group which has exponent $p$ and the second one is of exponent $p^2$. In this article, a new way of representing the extra-special $p$-group of exponent $p^2$ is given. These representations facilitate an explicit way of finding formulae for any endomorphism and any automorphism of an extra-special $p$-group $G$ for both the types. Based on these formulae, the endomorphism semigroup $End(G)$ and the automorphism group $Aut(G)$ are described. The endomorphism semigroup image of any element in $G$ is found and the orbits under the action of the automorphism group $Aut(G)$ are determined. As a consequence it is deduced that, under the notion of degeneration of elements in $G$, the endomorphism semigroup $End(G)$ induces a partial order on the automorphism orbits when $G$ is the Heisenberg group and does not induce when $G$ is the extra-special $p$-group of exponent $p^2$. Finally we prove that the cardinality of isotropic subspaces of any fixed dimension in a non-degenerate symplectic space is a polynomial in $p$ with non-negative integer coefficients. Using this fact we compute the cardinality of $End(G)$.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81368585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Boundedly finite conjugacy classes of tensors.","authors":"R. Bastos, C. Monetta","doi":"10.22108/IJGT.2020.124368.1643","DOIUrl":"https://doi.org/10.22108/IJGT.2020.124368.1643","url":null,"abstract":"Let $n$ be a positive integer and let $G$ be a group. We denote by $nu(G)$ a certain extension of the non-abelian tensor square $G otimes G$ by $G times G$. Set $T_{otimes}(G) = {g otimes h mid g,h in G}$. We prove that if the size of the conjugacy class $left |x^{nu(G)} right| leq n$ for every $x in T_{otimes}(G)$, then the second derived subgroup $nu(G)''$ is finite with $n$-bounded order. Moreover, we obtain a sufficient condition for a group to be a BFC-group.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79440084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Trees, dendrites and the Cannon–Thurston\u0000map","authors":"Elizabeth B Field","doi":"10.2140/agt.2020.20.3083","DOIUrl":"https://doi.org/10.2140/agt.2020.20.3083","url":null,"abstract":"When 1 -> H -> G -> Q -> 1 is a short exact sequence of three infinite, word-hyperbolic groups, Mahan Mitra (Mj) has shown that the inclusion map from H to G extends continuously to a map between the Gromov boundaries of H and G. This boundary map is known as the Cannon-Thurston map. In this context, Mitra associates to every point z in the Gromov boundary of Q an ''ending lamination'' on H which consists of pairs of distinct points in the boundary of H. We prove that for each such z, the quotient of the Gromov boundary of H by the equivalence relation generated by this ending lamination is a dendrite, that is, a tree-like topological space. This result generalizes the work of Kapovich-Lustig and Dowdall-Kapovich-Taylor, who prove that in the case where H is a free group and Q is a convex cocompact purely atoroidal subgroup of Out(F_N), one can identify the resultant quotient space with a certain $mathbb{R}$-tree in the boundary of Culler-Vogtmann's Outer space.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86776316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}