Trees, dendrites and the Cannon–Thurston map

Elizabeth B Field
{"title":"Trees, dendrites and the Cannon–Thurston\nmap","authors":"Elizabeth B Field","doi":"10.2140/agt.2020.20.3083","DOIUrl":null,"url":null,"abstract":"When 1 -> H -> G -> Q -> 1 is a short exact sequence of three infinite, word-hyperbolic groups, Mahan Mitra (Mj) has shown that the inclusion map from H to G extends continuously to a map between the Gromov boundaries of H and G. This boundary map is known as the Cannon-Thurston map. In this context, Mitra associates to every point z in the Gromov boundary of Q an ''ending lamination'' on H which consists of pairs of distinct points in the boundary of H. We prove that for each such z, the quotient of the Gromov boundary of H by the equivalence relation generated by this ending lamination is a dendrite, that is, a tree-like topological space. This result generalizes the work of Kapovich-Lustig and Dowdall-Kapovich-Taylor, who prove that in the case where H is a free group and Q is a convex cocompact purely atoroidal subgroup of Out(F_N), one can identify the resultant quotient space with a certain $\\mathbb{R}$-tree in the boundary of Culler-Vogtmann's Outer space.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2020.20.3083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

When 1 -> H -> G -> Q -> 1 is a short exact sequence of three infinite, word-hyperbolic groups, Mahan Mitra (Mj) has shown that the inclusion map from H to G extends continuously to a map between the Gromov boundaries of H and G. This boundary map is known as the Cannon-Thurston map. In this context, Mitra associates to every point z in the Gromov boundary of Q an ''ending lamination'' on H which consists of pairs of distinct points in the boundary of H. We prove that for each such z, the quotient of the Gromov boundary of H by the equivalence relation generated by this ending lamination is a dendrite, that is, a tree-like topological space. This result generalizes the work of Kapovich-Lustig and Dowdall-Kapovich-Taylor, who prove that in the case where H is a free group and Q is a convex cocompact purely atoroidal subgroup of Out(F_N), one can identify the resultant quotient space with a certain $\mathbb{R}$-tree in the boundary of Culler-Vogtmann's Outer space.
树木,树突和大炮-瑟斯通地图
当1 -> H -> G -> Q -> 1是三个无限双曲群的短精确序列时,Mahan Mitra (Mj)已经证明了从H到G的包含映射连续地延伸到H和G的Gromov边界之间的映射。这个边界映射被称为Cannon-Thurston映射。在这种情况下,Mitra将Q的Gromov边界上的每一个点z与H上的一个由H边界上不同的点对组成的“结束层合”联系起来,证明了对于每一个这样的z,通过该结束层合生成的等价关系,H的Gromov边界的商是一个树形拓扑空间,即树状拓扑空间。这个结果推广了kapoovich - lustig和dowdll - kapoovich - taylor的工作,他们证明了在H是自由群,Q是Out(F_N)的凸紧纯阿托向子群的情况下,可以用Culler-Vogtmann外空间边界上的某$\mathbb{R}$-树来识别合成商空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信