WWPD elements of big mapping class groups

Alexander J. Rasmussen
{"title":"WWPD elements of big mapping class groups","authors":"Alexander J. Rasmussen","doi":"10.4171/ggd/613","DOIUrl":null,"url":null,"abstract":"We study mapping class groups of infinite type surfaces with isolated punctures and their actions on the loop graphs introduced by Bavard-Walker. We classify all of the mapping classes in these actions which are loxodromic with a WWPD action on the corresponding loop graph. The WWPD property is a weakening of Bestvina-Fujiwara's weak proper discontinuity and is useful for constructing non-trivial quasimorphisms. We use this classification to give a sufficient criterion for subgroups of big mapping class groups to have infinite-dimensional second bounded cohomology and use this criterion to give simple proofs that certain natural subgroups of big mapping class groups have infinite-dimensional second bounded cohomology.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/ggd/613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We study mapping class groups of infinite type surfaces with isolated punctures and their actions on the loop graphs introduced by Bavard-Walker. We classify all of the mapping classes in these actions which are loxodromic with a WWPD action on the corresponding loop graph. The WWPD property is a weakening of Bestvina-Fujiwara's weak proper discontinuity and is useful for constructing non-trivial quasimorphisms. We use this classification to give a sufficient criterion for subgroups of big mapping class groups to have infinite-dimensional second bounded cohomology and use this criterion to give simple proofs that certain natural subgroups of big mapping class groups have infinite-dimensional second bounded cohomology.
大映射类组的WWPD元素
研究了具有孤立点的无限型曲面的映射类群及其在由Bavard-Walker引入的环图上的作用。我们对这些操作中的所有映射类进行分类,这些操作与对应的循环图上的WWPD操作是一致的。WWPD性质是对Bestvina-Fujiwara弱固有不连续的弱化,对于构造非平凡拟同态是有用的。利用这一分类给出了大映射类群的子群具有无限维第二有界上同调的充分判据,并利用这一判据给出了大映射类群的某些自然子群具有无限维第二有界上同调的简单证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信