Factorizations of surjective maps of connected quandles

T. Braun, C. Crotwell, A. Liu, P. Weston, D. Yetter
{"title":"Factorizations of surjective maps of connected quandles","authors":"T. Braun, C. Crotwell, A. Liu, P. Weston, D. Yetter","doi":"10.2140/INVOLVE.2021.14.53","DOIUrl":null,"url":null,"abstract":"We consider the problem of when one quandle homomorphism will factor through another, restricting our attention to the case where all quandles involved are connected. We provide a complete solution to the problem for surjective quandle homomorphisms using the structure theorem for connected quandles of Ehrman et al. (2008) and the factorization system for surjective quandle homomorphsims of Bunch et al. (2010) as our primary tools. The paper contains the substantive results obtained by an REU research group consisting of the first four authors under the mentorship of the fifth, and was supported by National Science Foundation, grant DMS-1659123.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/INVOLVE.2021.14.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of when one quandle homomorphism will factor through another, restricting our attention to the case where all quandles involved are connected. We provide a complete solution to the problem for surjective quandle homomorphisms using the structure theorem for connected quandles of Ehrman et al. (2008) and the factorization system for surjective quandle homomorphsims of Bunch et al. (2010) as our primary tools. The paper contains the substantive results obtained by an REU research group consisting of the first four authors under the mentorship of the fifth, and was supported by National Science Foundation, grant DMS-1659123.
连通环的满射映射的分解
我们考虑了一个双核同态何时会因子化另一个双核同态的问题,将我们的注意力限制在所有双核都是连通的情况下。我们使用Ehrman et al.(2008)的连通量子堆的结构定理和Bunch et al.(2010)的满射量子堆同态的分解系统作为我们的主要工具,提供了满射量子堆同态问题的完整解。本文包含了由前4位作者组成的REU课题组在第5位作者的指导下获得的实质性成果,并得到了美国国家科学基金(基金号:DMS-1659123)的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信