李维子群的过群I.阿贝尔单幂根的情况

P. Gvozdevsky
{"title":"李维子群的过群I.阿贝尔单幂根的情况","authors":"P. Gvozdevsky","doi":"10.1090/spmj/1631","DOIUrl":null,"url":null,"abstract":"In the present paper we prove sandwich classification for the overgroups of the subsystem subgroup $E(\\Delta,R)$ of the Chevalley group $G(\\Phi,R)$ for the three types of pair $(\\Phi,\\Delta)$ (the root system and its subsystem) such that the group $G(\\Delta,R)$ is (up to torus) a Levi subgroup of the parabolic subgroup with abelian unipotent radical. Namely we show that for any such an overgroup $H$ there exists a unique pair of ideals $\\sigma$ of the ring $R$ such that $E(\\Phi,\\Delta,R,\\sigma)\\le H\\le N_{G(\\Phi,R)}(E(\\Phi,\\Delta,R,\\sigma))$.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Overgroups of Levi subgroups I. The case of abelian unipotent radical\",\"authors\":\"P. Gvozdevsky\",\"doi\":\"10.1090/spmj/1631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper we prove sandwich classification for the overgroups of the subsystem subgroup $E(\\\\Delta,R)$ of the Chevalley group $G(\\\\Phi,R)$ for the three types of pair $(\\\\Phi,\\\\Delta)$ (the root system and its subsystem) such that the group $G(\\\\Delta,R)$ is (up to torus) a Levi subgroup of the parabolic subgroup with abelian unipotent radical. Namely we show that for any such an overgroup $H$ there exists a unique pair of ideals $\\\\sigma$ of the ring $R$ such that $E(\\\\Phi,\\\\Delta,R,\\\\sigma)\\\\le H\\\\le N_{G(\\\\Phi,R)}(E(\\\\Phi,\\\\Delta,R,\\\\sigma))$.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/spmj/1631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文证明了对于三种类型的对$(\Phi,\Delta)$(根及其子系统),对于Chevalley群$G(\Phi,R)$的子系统子群$E(\Delta,R)$的过群的夹心分类,使得群$G(\Delta,R)$(在环面以内)是具有阿贝尔单幂根的抛物子群的Levi子群。也就是说,我们证明了对于任何这样的超群$H$,存在着环$R$的唯一一对理想$\sigma$,使得$E(\Phi,\Delta,R,\sigma)\le H\le N_{G(\Phi,R)}(E(\Phi,\Delta,R,\sigma))$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overgroups of Levi subgroups I. The case of abelian unipotent radical
In the present paper we prove sandwich classification for the overgroups of the subsystem subgroup $E(\Delta,R)$ of the Chevalley group $G(\Phi,R)$ for the three types of pair $(\Phi,\Delta)$ (the root system and its subsystem) such that the group $G(\Delta,R)$ is (up to torus) a Levi subgroup of the parabolic subgroup with abelian unipotent radical. Namely we show that for any such an overgroup $H$ there exists a unique pair of ideals $\sigma$ of the ring $R$ such that $E(\Phi,\Delta,R,\sigma)\le H\le N_{G(\Phi,R)}(E(\Phi,\Delta,R,\sigma))$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信