{"title":"张量的有界有限共轭类。","authors":"R. Bastos, C. Monetta","doi":"10.22108/IJGT.2020.124368.1643","DOIUrl":null,"url":null,"abstract":"Let $n$ be a positive integer and let $G$ be a group. We denote by $\\nu(G)$ a certain extension of the non-abelian tensor square $G \\otimes G$ by $G \\times G$. Set $T_{\\otimes}(G) = \\{g \\otimes h \\mid g,h \\in G\\}$. We prove that if the size of the conjugacy class $\\left |x^{\\nu(G)} \\right| \\leq n$ for every $x \\in T_{\\otimes}(G)$, then the second derived subgroup $\\nu(G)''$ is finite with $n$-bounded order. Moreover, we obtain a sufficient condition for a group to be a BFC-group.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedly finite conjugacy classes of tensors.\",\"authors\":\"R. Bastos, C. Monetta\",\"doi\":\"10.22108/IJGT.2020.124368.1643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $n$ be a positive integer and let $G$ be a group. We denote by $\\\\nu(G)$ a certain extension of the non-abelian tensor square $G \\\\otimes G$ by $G \\\\times G$. Set $T_{\\\\otimes}(G) = \\\\{g \\\\otimes h \\\\mid g,h \\\\in G\\\\}$. We prove that if the size of the conjugacy class $\\\\left |x^{\\\\nu(G)} \\\\right| \\\\leq n$ for every $x \\\\in T_{\\\\otimes}(G)$, then the second derived subgroup $\\\\nu(G)''$ is finite with $n$-bounded order. Moreover, we obtain a sufficient condition for a group to be a BFC-group.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2020.124368.1643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2020.124368.1643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $n$ be a positive integer and let $G$ be a group. We denote by $\nu(G)$ a certain extension of the non-abelian tensor square $G \otimes G$ by $G \times G$. Set $T_{\otimes}(G) = \{g \otimes h \mid g,h \in G\}$. We prove that if the size of the conjugacy class $\left |x^{\nu(G)} \right| \leq n$ for every $x \in T_{\otimes}(G)$, then the second derived subgroup $\nu(G)''$ is finite with $n$-bounded order. Moreover, we obtain a sufficient condition for a group to be a BFC-group.