张量的有界有限共轭类。

R. Bastos, C. Monetta
{"title":"张量的有界有限共轭类。","authors":"R. Bastos, C. Monetta","doi":"10.22108/IJGT.2020.124368.1643","DOIUrl":null,"url":null,"abstract":"Let $n$ be a positive integer and let $G$ be a group. We denote by $\\nu(G)$ a certain extension of the non-abelian tensor square $G \\otimes G$ by $G \\times G$. Set $T_{\\otimes}(G) = \\{g \\otimes h \\mid g,h \\in G\\}$. We prove that if the size of the conjugacy class $\\left |x^{\\nu(G)} \\right| \\leq n$ for every $x \\in T_{\\otimes}(G)$, then the second derived subgroup $\\nu(G)''$ is finite with $n$-bounded order. Moreover, we obtain a sufficient condition for a group to be a BFC-group.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedly finite conjugacy classes of tensors.\",\"authors\":\"R. Bastos, C. Monetta\",\"doi\":\"10.22108/IJGT.2020.124368.1643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $n$ be a positive integer and let $G$ be a group. We denote by $\\\\nu(G)$ a certain extension of the non-abelian tensor square $G \\\\otimes G$ by $G \\\\times G$. Set $T_{\\\\otimes}(G) = \\\\{g \\\\otimes h \\\\mid g,h \\\\in G\\\\}$. We prove that if the size of the conjugacy class $\\\\left |x^{\\\\nu(G)} \\\\right| \\\\leq n$ for every $x \\\\in T_{\\\\otimes}(G)$, then the second derived subgroup $\\\\nu(G)''$ is finite with $n$-bounded order. Moreover, we obtain a sufficient condition for a group to be a BFC-group.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2020.124368.1643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2020.124368.1643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$n$为正整数,设$G$为一个组。我们用$\nu(G)$表示非阿贝尔张量平方的某个扩展$G \otimes G$乘以$G \times G$。设置$T_{\otimes}(G) = \{g \otimes h \mid g,h \in G\}$。证明了如果共轭类$\left |x^{\nu(G)} \right| \leq n$对于每一个$x \in T_{\otimes}(G)$的大小,则第二派生子群$\nu(G)''$是有限的,阶为$n$ -有界。此外,还得到了群为bfc群的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundedly finite conjugacy classes of tensors.
Let $n$ be a positive integer and let $G$ be a group. We denote by $\nu(G)$ a certain extension of the non-abelian tensor square $G \otimes G$ by $G \times G$. Set $T_{\otimes}(G) = \{g \otimes h \mid g,h \in G\}$. We prove that if the size of the conjugacy class $\left |x^{\nu(G)} \right| \leq n$ for every $x \in T_{\otimes}(G)$, then the second derived subgroup $\nu(G)''$ is finite with $n$-bounded order. Moreover, we obtain a sufficient condition for a group to be a BFC-group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信