Annals of PhysicsPub Date : 2024-09-26DOI: 10.1016/j.aop.2024.169814
{"title":"Photon orbits and phase transition for gravitational decoupled Kerr anti-de Sitter black holes","authors":"","doi":"10.1016/j.aop.2024.169814","DOIUrl":"10.1016/j.aop.2024.169814","url":null,"abstract":"<div><div>Interpreting the cosmological constant as the energy of the vacuum and using a gravitational decoupling approach leads to a new Kerr–anti-de Sitter (AdS) black hole. The metric of the new Kerr–AdS is more straightforward than the standard Kerr–AdS and geometrically richer, showing the rotation’s impact as a warped curvature. We investigate the relationship between the unstable photon orbits and thermodynamic phase transition to the new Kerr–AdS black hole background. We derive an exact expression for thermodynamic properties of black holes, including mass (<span><math><mi>M</mi></math></span>), Hawking temperature (<span><math><mi>T</mi></math></span>), entropy (<span><math><mi>S</mi></math></span>), heat capacity (<span><math><mi>G</mi></math></span>), and free energy (<span><math><mi>G</mi></math></span>), by relating the negative cosmological constant to positive pressure through the equation <span><math><mrow><mi>P</mi><mo>=</mo><mo>−</mo><mi>Λ</mi><mo>/</mo><mn>8</mn><mi>π</mi><mo>=</mo><mn>3</mn><mo>/</mo><mn>8</mn><mi>π</mi><msup><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where <span><math><mi>l</mi></math></span> represents the horizon radius, and by introducing its conjugate variable as the thermodynamic volume <span><math><mi>V</mi></math></span>. When <span><math><mrow><mi>P</mi><mo><</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, black holes with <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> exhibit stability against thermal fluctuations, while those with <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>≤</mo><mn>0</mn></mrow></math></span> are unstable. Our analysis of Gibbs free energy reveals a phase transition from small globally unstable black holes to large globally stable ones. Additionally, investigating the system’s <span><math><mrow><mi>P</mi><mo>−</mo><mi>V</mi></mrow></math></span> criticality and determining the critical exponents shows that our system shares similarities with a Van der Waals (vdW) fluid. In the reduced parameter space, we observe nonmonotonic behaviours of the photon sphere radius and the critical impact parameter when the pressure is below its critical value. It indicates that alterations in the photon sphere radius and the minimum impact parameter can act as order parameters for the phase transition between small and large black holes. In discussing the applicability of the Maxwell equal area law, we highlight the presence of a characteristic vdW-like oscillation in the <span><math><mrow><mi>P</mi><mo>−</mo><mi>V</mi></mrow></math></span> diagram. This oscillation, denoting the phase transition from a small black hole to a large one, can be substituted by an isobar. Furthermore, we present the distribution of critical points in parameter space and derive a fitting formula for the co-existence curve.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annals of PhysicsPub Date : 2024-09-24DOI: 10.1016/j.aop.2024.169813
{"title":"Late-time constraints on homogeneous and isotropic FLRW cosmology with torsion","authors":"","doi":"10.1016/j.aop.2024.169813","DOIUrl":"10.1016/j.aop.2024.169813","url":null,"abstract":"<div><div>The present work deals with observational data analysis of four different models of homogeneous and isotropic Friedmann–Lemaitre–Robertson–Walker (FLRW) cosmology with torsion, where the torsion function is described by a scalar function <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> associated with the spin of the matter. It has been found that among the four models, the third model, where the torsion function is proportional to Hubble parameter as well as power law of matter density, best fits the observational data. Further, the evolution of the torsion function reveals that torsion was subdominant relative to matter energy density during the matter-dominated era. However, torsion gradually becomes dominant following the transition into the current late-time accelerating phase. It plays a pivotal role as an alternative to dark energy, thereby accounting for the present cosmic acceleration.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annals of PhysicsPub Date : 2024-09-24DOI: 10.1016/j.aop.2024.169811
{"title":"Favorable phase transitions induced by spinful electron–electron interactions in two-dimensional semimetal with a quadratic band crossing point","authors":"","doi":"10.1016/j.aop.2024.169811","DOIUrl":"10.1016/j.aop.2024.169811","url":null,"abstract":"<div><div>We study the effects of marginally spinful electron–electron interactions on the low-energy instabilities and favorable phase transitions in a two-dimensional (2D) spin-<span><math><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span> semimetal that owns a quadratic band crossing point (QBCP) parabolically touched by the upper and lower bands. In the framework of a renormalization group procedure, all sorts of interactions are treated on the equal footing to derive the coupled energy-dependent evolutions of all interaction couplings that govern the low-energy properties. Deciphering the essential physical information of such flows, we at first find that the tendencies of interaction parameters fall into three categories including Limit case, Special case, and General case based on the initial conditions. In addition, the 2D QBCP system is attracted to several distinct kinds of fixed points (FPs) in the interaction-parameter space, namely <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>/<span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>−</mo></mrow></msubsup></math></span>, <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span>/ <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span>/<span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span>, and <span><math><mrow><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>±</mo></mrow></msubsup><mo>/</mo><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>±</mo></mrow></msubsup><mo>/</mo><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>41</mn><mo>,</mo><mn>42</mn><mo>,</mo><mn>43</mn></mrow><mrow><mo>±</mo></mrow></msubsup></mrow></math></span> with the subscripts characterizing the features of FPs for the Limit, Special, and General cases, respectively. Furthermore, as approaching these FPs, we demonstrate that the spinful fermion–fermion interactions can induce a number of favorable instabilities accompanied by certain phase transitions. Specifically, the quantum anomalous Hall (QAH), quantum spin Hall (QSH), and nematic (Nem.) site(bond) states are dominant for <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span>, <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span>, and <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span>, respectively. Rather, QSH becomes anisotropic nearby <span><math><msubsup><mrow><mi>FP</mi></mrow><mrow><mn>41</mn><mo>,</mo><mn>42</mn><mo>,</mo><mn>43</mn></mrow><mrow><mo>±</mo></mrow></msubsup></math></span> with one component leading and the others subleading. Besides, Nem.site(bond), chi","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annals of PhysicsPub Date : 2024-09-23DOI: 10.1016/j.aop.2024.169812
{"title":"Asymptotic safe nonassociative quantum gravity with star R-flux products, Goroff–Sagnotti counter-terms, and geometric flows","authors":"","doi":"10.1016/j.aop.2024.169812","DOIUrl":"10.1016/j.aop.2024.169812","url":null,"abstract":"<div><div>Nonassociative modifications of general relativity, GR, defined by star products with R-flux deformations in string gravity consist an important subclass of modified gravity theories, MGTs. A longstanding criticism for elaborating quantum gravity, QG, argue that the asymptotic safety does not survive once certain perturbative terms (in general, nonassociative and noncommutative) are included in the projection space. The goal of this work is to prove that a generalized asymptotic safety scenario allows us to formulate physically viable nonassociative QG theories using effective models defined by generic off-diagonal solutions and nonlinear symmetries in nonassociative geometric flow and gravity theories. We elaborate on a new nonholonomic functional renormalization techniques with parametric renormalization group, RG, flow equations for effective actions supplemented by certain canonical two-loop counter-terms. The geometric constructions and quantum deformations are performed for nonassociative phase spaces modelled as R-flux deformed cotangent Lorentz bundles. Our results prove that theories involving nonassociative modifications of GR can be well defined both as classical nonassociative MGTs and QG models. Such theories are characterized by generalized G. Perelman thermodynamic variables which are computed for certain examples of nonassociative geometric and RG flows.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annals of PhysicsPub Date : 2024-09-23DOI: 10.1016/j.aop.2024.169806
{"title":"Lieb-Schultz-Mattis theorems for symmetry-protected topological phases","authors":"","doi":"10.1016/j.aop.2024.169806","DOIUrl":"10.1016/j.aop.2024.169806","url":null,"abstract":"<div><div>The Lieb-Schultz-Mattis (LSM) theorem and its generalizations are a class of powerful no-go theorems that rule out any short-range-entangled (SRE) symmetric ground state irrespective of the specific Hamiltonian, based only on certain microscopic inputs, such as symmetries and particle filling numbers. In this work, we introduce and provide physical arguments for a new class of LSM-type theorems, where any symmetry-allowed SRE ground state must be a symmetry-protected topological (SPT) phase with robust gapless edge states, such as topological insulators and superconductors. The key ingredient is to replace the lattice translation symmetry in usual LSM theorems by the magnetic translation symmetry. These theorems provide new insights into realistic models and experimental realizations of SPT phases in interacting bosons and fermions.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annals of PhysicsPub Date : 2024-09-21DOI: 10.1016/j.aop.2024.169808
{"title":"Teleparallel gravity and quintessence: The role of nonminimal boundary couplings","authors":"","doi":"10.1016/j.aop.2024.169808","DOIUrl":"10.1016/j.aop.2024.169808","url":null,"abstract":"<div><div>In this paper, we have outlined the development of an autonomous dynamical system within a general scalar-tensor gravity framework. This framework encompasses the overall structure of the non-minimally coupled scalar field functions for both the torsion scalar (<span><math><mi>T</mi></math></span>) and the boundary term (<span><math><mi>B</mi></math></span>). We have examined three well-motivated forms of potential functions and constrained the model parameters through dynamical system analysis. This analysis has played a crucial role in identifying cosmologically viable models. We have analysed the behaviour of dynamical parameters such as equation-of-state parameters, as well all the standard density parameters for radiation, matter, and dark energy to assess their compatibility with current observational data. The phase space diagrams are presented to support the stability conditions of the corresponding critical points. The Universe is apparent in its late-time cosmic acceleration phase via the dark energy-dominated critical points. Additionally, we compare our findings with the most prevailing <span><math><mi>Λ</mi></math></span>CDM model. The outcomes are further inspected using the cosmological data sets of Supernovae Ia and the Hubble rate <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annals of PhysicsPub Date : 2024-09-19DOI: 10.1016/j.aop.2024.169802
{"title":"Observable strong field effects of extra spacetime dimension in the braneworld black hole","authors":"","doi":"10.1016/j.aop.2024.169802","DOIUrl":"10.1016/j.aop.2024.169802","url":null,"abstract":"<div><p>Inspired by the string theory, the braneworld picture introduces extra dimensions beyond the four that may have observable non-trivial effects in short distance (strong field) gravity experiments. A case in point is the Randall–Sundrum braneworld picture that projects the <span><math><mrow><mn>5</mn><mi>d</mi></mrow></math></span> bulk Weyl tensor onto the <span><math><mrow><mn>3</mn><mi>d</mi></mrow></math></span> brane providing a stress tensor in the effective Einstein field equations on the brane. Dadhich, Maartens, Papadopoulos and Rezania (DMPR) derived an exact braneworld black hole solution of the brane vacuum field equations. The solution formally resembles that of Reissner–Nordström but is physically different from it since the ”tidal charge” <span><math><mi>Υ</mi></math></span> in the solution is not the electric charge but an imprint from the fifth dimension allowing both signs in the power law modification <span><math><mrow><mo>±</mo><mfrac><mrow><msup><mrow><mi>Υ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></math></span> to the Schwarzschild metric <span><math><mfenced><mrow><mi>Υ</mi><mo>=</mo><mn>0</mn></mrow></mfenced></math></span>. The corresponding black holes are designated as DMPR<span><math><mo>±</mo></math></span>. We study here the effect of <span><math><mi>Υ</mi></math></span> on strong field lensing observables and compare in the eikonal limit the ring down quasinormal mode (QNM) frequencies of DMPR<span><math><mo>−</mo></math></span> with those of DMPR+ , the two variants of tidal charge modified Schwarzschild black hole (<span><math><mrow><mi>Υ</mi><mo>=</mo><mn>0</mn></mrow></math></span>). It turns out that the tidal charge can significantly modify the Schwarzschild lensing observables and QNM frequencies. In particular, we find that the Pretorius–Khurana critical exponent <span><math><mi>γ</mi></math></span> of circular null orbits in the DMPR<span><math><mo>−</mo></math></span> black hole has a lower value than that for the Schwarzschild black hole, which indicates a stronger Lyapunov instability suggesting that the accretion disks of DMPR<span><math><mo>−</mo></math></span> black holes would appear brighter. The case of the SgrA* black hole is considered for a possible constraint on <span><math><mi>Υ</mi></math></span> from the EHT observation of its shadow size.</p></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annals of PhysicsPub Date : 2024-09-17DOI: 10.1016/j.aop.2024.169807
{"title":"Phases and coherence of strongly interacting finite bosonic systems in shallow optical lattice","authors":"","doi":"10.1016/j.aop.2024.169807","DOIUrl":"10.1016/j.aop.2024.169807","url":null,"abstract":"<div><div>We explore the ground states of strongly interacting bosons in the vanishingly small and weak lattices using the multiconfiguration time-dependent Hartree method for bosons (MCTDHB) which calculate numerically exact many-body wave function. Two new many-body phases: fragmented or quasi superfluid (QSF) and incomplete fragmented Mott or quasi Mott insulator (QMI) are emerged due to the strong interplay between short-range contact interaction and lattice depth. Fragmentation is utilized as a figure of merit to distinguish these two new phases. We utilize the eigenvalues of the reduced one-body density matrix and define an order parameter that characterizes the pathway from a very weak lattice to a deep lattice. We provide a detailed investigation through the measures of one- and two-body correlations and information entropy. We find that the structures in one- and two-body coherence are good markers to understand the gradual built-up of intra-well correlation and decay of inter-well correlation with increase in lattice depth. For the dipolar interaction, the many-body features become more distinct and true Mott state can appear even in a shallow lattice. Whereas, for incommensurate fraction of particles, incomplete localization happens that exhibits distinct features in the measure of two-body coherence.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annals of PhysicsPub Date : 2024-09-16DOI: 10.1016/j.aop.2024.169805
{"title":"Emergence of squeezed coherent states in Kaluza–Klein cosmology","authors":"","doi":"10.1016/j.aop.2024.169805","DOIUrl":"10.1016/j.aop.2024.169805","url":null,"abstract":"<div><p>In this work, we consider a propagating scalar field on Kaluza–Klein-type cosmological background. It is shown that this geometrical description of the Universe resembles – from a Hamiltonian standpoint – a damped harmonic oscillator with mass and frequency, both time-dependents. In this scenario, we construct the squeezed coherent states (SCSs) for the quantized scalar field by employing the invariant operator method of Lewis–Riesenfeld (non-Hermitian) in a non-unitary approach. The non-classicality of SCSs has been discussed by examining the quadrature squeezing properties from the uncertainty principle. Moreover, we compute the probability density, which allows us to investigate whether SCSs can be used to seek traces of extra dimensions. We then analyze the effects of the existence of supplementary space on cosmological particle production in SCSs by considering different cosmological eras.</p></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annals of PhysicsPub Date : 2024-09-14DOI: 10.1016/j.aop.2024.169801
{"title":"Renormalization of the Einstein–Cartan theory in first-order form","authors":"","doi":"10.1016/j.aop.2024.169801","DOIUrl":"10.1016/j.aop.2024.169801","url":null,"abstract":"<div><div>We examine the Einstein–Cartan (EC) theory in first-order form, which has a diffeomorphism as well as a local Lorentz invariance. We study the renormalizability of this theory in the framework of the Batalin–Vilkovisky formalism, which allows for a gauge invariant renormalization. Using the background field method, we discuss the gauge invariance of the background effective action and analyze the Ward identities which reflect the symmetries of the EC theory. As an application, we compute, in a general background gauge, the self-energy of the tetrad field at one-loop order.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}