关于Schwarzschild-Levi-Civita度规

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Z. Amirabi
{"title":"关于Schwarzschild-Levi-Civita度规","authors":"Z. Amirabi","doi":"10.1016/j.aop.2025.170204","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates gravitational lensing and null geodesics in the Schwarzschild-Levi-Civita Metric (SLCM), an axially symmetric solution to the vacuum Einstein equations. The SLCM resembles the Ernst black hole but differs fundamentally in being a vacuum solution rather than one sourced by electromagnetic fields. Utilizing the Gauss–Bonnet theorem and the optical metric approach developed by Gibbons, Werner, and Ishihara et al., the deflection angle of light in the SLCM is derived, including finite-distance corrections for source and observer positions. An explicit analytic expression for the deflection angle is obtained, featuring both Levi-Civita-like terms and corrections from the SLCM’s cosmological horizon. Numerical analysis of null geodesics confirms that all light rays are eventually drawn toward the horizon, regardless of initial velocity direction. These findings offer insights into the lensing properties of axially symmetric, non-asymptotically flat spacetimes in general relativity.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"482 ","pages":"Article 170204"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Schwarzschild-Levi-Civita Metric\",\"authors\":\"Z. Amirabi\",\"doi\":\"10.1016/j.aop.2025.170204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates gravitational lensing and null geodesics in the Schwarzschild-Levi-Civita Metric (SLCM), an axially symmetric solution to the vacuum Einstein equations. The SLCM resembles the Ernst black hole but differs fundamentally in being a vacuum solution rather than one sourced by electromagnetic fields. Utilizing the Gauss–Bonnet theorem and the optical metric approach developed by Gibbons, Werner, and Ishihara et al., the deflection angle of light in the SLCM is derived, including finite-distance corrections for source and observer positions. An explicit analytic expression for the deflection angle is obtained, featuring both Levi-Civita-like terms and corrections from the SLCM’s cosmological horizon. Numerical analysis of null geodesics confirms that all light rays are eventually drawn toward the horizon, regardless of initial velocity direction. These findings offer insights into the lensing properties of axially symmetric, non-asymptotically flat spacetimes in general relativity.</div></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":\"482 \",\"pages\":\"Article 170204\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491625002866\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491625002866","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了真空爱因斯坦方程轴对称解施瓦西-列维-西维塔度量(SLCM)中的引力透镜和零测地线。SLCM类似于恩斯特黑洞,但本质上不同的是它是一个真空解决方案,而不是一个由电磁场产生的解决方案。利用高斯-邦尼特定理和Gibbons、Werner和Ishihara等人开发的光学度量方法,推导了SLCM中光的偏转角,包括光源和观测者位置的有限距离修正。得到了偏转角的显式解析表达式,该表达式既具有类似列维-奇维塔的项,又具有来自SLCM宇宙学视界的修正。零测地线的数值分析证实,无论初始速度方向如何,所有光线最终都被吸引到地平线上。这些发现为广义相对论中轴对称、非渐近平坦时空的透镜特性提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Schwarzschild-Levi-Civita Metric
This study investigates gravitational lensing and null geodesics in the Schwarzschild-Levi-Civita Metric (SLCM), an axially symmetric solution to the vacuum Einstein equations. The SLCM resembles the Ernst black hole but differs fundamentally in being a vacuum solution rather than one sourced by electromagnetic fields. Utilizing the Gauss–Bonnet theorem and the optical metric approach developed by Gibbons, Werner, and Ishihara et al., the deflection angle of light in the SLCM is derived, including finite-distance corrections for source and observer positions. An explicit analytic expression for the deflection angle is obtained, featuring both Levi-Civita-like terms and corrections from the SLCM’s cosmological horizon. Numerical analysis of null geodesics confirms that all light rays are eventually drawn toward the horizon, regardless of initial velocity direction. These findings offer insights into the lensing properties of axially symmetric, non-asymptotically flat spacetimes in general relativity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信