{"title":"Optically controlled topological phases in the deformed α-T3 lattice","authors":"O. Benhaida , E.H. Saidi , L.B. Drissi","doi":"10.1016/j.aop.2025.170203","DOIUrl":null,"url":null,"abstract":"<div><div>Haldane’s tight-binding model, which describes a Chern insulator in a two-dimensional hexagonal lattice, exhibits quantum Hall conductivity without an external magnetic field. Here, we explore an <span><math><mrow><mi>α</mi><mo>−</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> lattice subjected to circularly polarized off-resonance light. This lattice, composed of two sublattices (A and B) and a central site (C) per unit cell, undergoes deformation by varying the hopping parameter <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> while keeping <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mi>γ</mi></mrow></math></span>. Analytical expressions for quasi-energies in the first Brillouin zone reveal significant effects of symmetry breaking. Circularly polarized light lifts the degeneracy of Dirac points, shifting the cones from M. This deformation evolves with <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, breaking symmetry at <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>2</mn><mi>γ</mi></mrow></math></span>, as observed in Berry curvature diagrams. In the standard case (<span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>γ</mi></mrow></math></span>), particle-hole and inversion symmetries are preserved for <span><math><mrow><mi>α</mi><mo>=</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>α</mi><mo>=</mo><mn>1</mn></mrow></math></span>. The system transitions from a semi-metal to a Chern insulator, with band-specific Chern numbers: <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mo>−</mo><mn>1</mn></mrow></math></span> for <span><math><mrow><mi>α</mi><mo><</mo><mn>1</mn><mo>/</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>,</mo></mrow></math></span> shifting to <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mo>−</mo><mn>2</mn></mrow></math></span> when <span><math><mrow><mi>α</mi><mo>⩾</mo><mn>1</mn><mo>/</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mo>.</mo></mrow></math></span>For <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>></mo><mn>2</mn><mi>γ</mi></mrow></math></span>, the system enters a trivial insulating phase. These transitions, confirmed via Wannier charge centres, are accompanied by a diminishing Hall conductivity. Our findings highlight tunable topological phases in <span><math><mrow><mi>α</mi><mo>−</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> lattices, driven by light and structural deformation, with promising implications for quantum materials.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"482 ","pages":"Article 170203"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491625002854","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Haldane’s tight-binding model, which describes a Chern insulator in a two-dimensional hexagonal lattice, exhibits quantum Hall conductivity without an external magnetic field. Here, we explore an lattice subjected to circularly polarized off-resonance light. This lattice, composed of two sublattices (A and B) and a central site (C) per unit cell, undergoes deformation by varying the hopping parameter while keeping . Analytical expressions for quasi-energies in the first Brillouin zone reveal significant effects of symmetry breaking. Circularly polarized light lifts the degeneracy of Dirac points, shifting the cones from M. This deformation evolves with , breaking symmetry at , as observed in Berry curvature diagrams. In the standard case (), particle-hole and inversion symmetries are preserved for and . The system transitions from a semi-metal to a Chern insulator, with band-specific Chern numbers: , , and for shifting to , , and when For , the system enters a trivial insulating phase. These transitions, confirmed via Wannier charge centres, are accompanied by a diminishing Hall conductivity. Our findings highlight tunable topological phases in lattices, driven by light and structural deformation, with promising implications for quantum materials.
期刊介绍:
Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance.
The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.