Janki Ruparelia, Aniruddh Rabari, Nishra Joshi, Asha Dhediya, Jigisha Halpati, Ankita A. Patel, C. Jha
{"title":"Reconnoitring Natural Antibacterial Appraisal of Medicinal Plants Extract Against Human Pathogen Salmonella Paratyphi A and Salmonella Paratyphi B","authors":"Janki Ruparelia, Aniruddh Rabari, Nishra Joshi, Asha Dhediya, Jigisha Halpati, Ankita A. Patel, C. Jha","doi":"10.11648/j.cbe.20210602.11","DOIUrl":"https://doi.org/10.11648/j.cbe.20210602.11","url":null,"abstract":"Regardless of the convenience of plentiful miscellaneous collection of synthetic products and high-throughput tactics for their biological testing, natural compounds twig at a major source for antimicrobial drug development. These compounds are exclusively treasured as they have endured natural assortment over time. In this study we concentrated on Ethnobotanical efficacy of Indian medicinal plants like Ocimum sanctum, Phyllanthus emblica and Bryophyllum pinnatum for defence against bacterial human pathogen salmonella paratyphi A and salmonella paratyphi B. Phytochemical screening of these plants was executed for constituents like alkaloids, flavonoids, tannins, steroids, glycosides, carbohydrates and aminoacids. The ethanol extract of these plants exhibited good activity against the human pathogens by agar well diffusion assay method and the MIC was recorded. Average mean zone of inhibition found by these plants ranged between 4 mm to 29 mm and 4 mm to 27 mm respectively for salmonella paratyphi A and salmonella paratyphi B. These results accomplish the antimicrobial potential of the medicinal plants and hence convey upkeep for the use of them in traditional medicine.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77332721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David H Bowskill, Isaac J Sugden, Stefanos Konstantinopoulos, Claire S Adjiman, Constantinos C Pantelides
{"title":"Crystal Structure Prediction Methods for Organic Molecules: State of the Art.","authors":"David H Bowskill, Isaac J Sugden, Stefanos Konstantinopoulos, Claire S Adjiman, Constantinos C Pantelides","doi":"10.1146/annurev-chembioeng-060718-030256","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-060718-030256","url":null,"abstract":"<p><p>The prediction of the crystal structures that a given organic molecule is likely to form is an important theoretical problem of significant interest for the pharmaceutical and agrochemical industries, among others. As evidenced by a series of six blind tests organized over the past 2 decades, methodologies for crystal structure prediction (CSP) have witnessed substantial progress and have now reached a stage of development where they can begin to be applied to systems of practical significance. This article reviews the state of the art in general-purpose methodologies for CSP, placing them within a common framework that highlights both their similarities and their differences. The review discusses specific areas that constitute the main focus of current research efforts toward improving the reliability and widening applicability of these methodologies, and offers some perspectives for the evolution of this technology over the next decade.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25520080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karthik Pushpavanam, Jinrong Ma, Yifeng Cai, Nada Y Naser, François Baneyx
{"title":"Solid-Binding Proteins: Bridging Synthesis, Assembly, and Function in Hybrid and Hierarchical Materials Fabrication.","authors":"Karthik Pushpavanam, Jinrong Ma, Yifeng Cai, Nada Y Naser, François Baneyx","doi":"10.1146/annurev-chembioeng-102020-015923","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-102020-015923","url":null,"abstract":"<p><p>There is considerable interest in the development of hybrid organic-inorganic materials because of the potential for harvesting the unique capabilities that each system has to offer. Proteins are an especially attractive organic component owing to the high amount of chemical information encoded in their amino acid sequence, their amenability to molecular and computational (re)design, and the many structures and functions they specify. Genetic installation of solid-binding peptides (SBPs) within protein frameworks affords control over the position and orientation of adhesive and morphogenetic segments, and a path toward predictive synthesis and assembly of functional materials and devices, all while harnessing the built-in properties of the host scaffold. Here, we review the current understanding of the mechanisms through which SBPs bind to technologically relevant interfaces, with an emphasis on the variables that influence the process, and highlight the last decade of progress in the use of solid-binding proteins for hybrid and hierarchical materials synthesis.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25590352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Autobiography of Stanley I. Sandler.","authors":"Stanley I Sandler","doi":"10.1146/annurev-chembioeng-050520-013749","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-050520-013749","url":null,"abstract":"<p><p>I review my career from its academic beginning to my recent retirement. I grew up and studied chemical engineering in New York City. My initial failure to understand thermodynamics the way it had been taught, evidenced by the difficulty I had when starting graduate school, led me years later to write a textbook on the subject that is now in a fifth edition, in addition to other books I have written. My research areas have included molecular simulation, statistical- and quantum mechanical-based methods, and a variety of experimental thermodynamic measurements. In addition, I have been a consultant in traditional chemical engineering areas, as well in nontraditional areas, such as assisting in the design of a heat shield for interplanetary exploration, the destruction of armed chemical weapons, and the cleanup of nuclear weapons production facilities.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25384527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Liquid-Liquid Chromatography: Current Design Approaches and Future Pathways.","authors":"Raena Morley, Mirjana Minceva","doi":"10.1146/annurev-chembioeng-101420-033548","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-101420-033548","url":null,"abstract":"<p><p>Since its first appearance in the 1960s, solid support-free liquid-liquid chromatography has played an ever-growing role in the field of natural products research. The use of the two phases of a liquid biphasic system, the mobile and stationary phases, renders the technique highly versatile and adaptable to a wide spectrum of target molecules, from hydrophobic to highly polar small molecules to proteins. Generally considered a niche technique used only for small-scale preparative separations, liquid-liquid chromatography currently lags far behind conventional liquid-solid chromatography and liquid-liquid extraction in process modeling and industrial acceptance. This review aims to expose a broader audience to this high-potential separation technique by presenting the wide variety of available operating modes and solvent systems as well as structured, model-based design approaches. Topics currently offering opportunities for further investigation are also addressed.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25584878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Philip S Ringrose, Anne-Kari Furre, Stuart M V Gilfillan, Samuel Krevor, Martin Landrø, Rory Leslie, Tip Meckel, Bamshad Nazarian, Adeel Zahid
{"title":"Storage of Carbon Dioxide in Saline Aquifers: Physicochemical Processes, Key Constraints, and Scale-Up Potential.","authors":"Philip S Ringrose, Anne-Kari Furre, Stuart M V Gilfillan, Samuel Krevor, Martin Landrø, Rory Leslie, Tip Meckel, Bamshad Nazarian, Adeel Zahid","doi":"10.1146/annurev-chembioeng-093020-091447","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-093020-091447","url":null,"abstract":"<p><p>CO<sub>2</sub> storage in saline aquifers offers a realistic means of achieving globally significant reductions in greenhouse gas emissions at the scale of billions of tonnes per year. We review insights into the processes involved using well-documented industrial-scale projects, supported by a range of laboratory analyses, field studies, and flow simulations. The main topics we address are (<i>a</i>) the significant physicochemical processes, (<i>b</i>) the factors limiting CO<sub>2</sub> storage capacity, and (<i>c</i>) the requirements for global scale-up.Although CO<sub>2</sub> capture and storage (CCS) technology can be considered mature and proven, it requires significant and rapid scale-up to meet the objectives of the Paris Climate Agreement. The projected growth in the number of CO<sub>2</sub> injection wells required is significantly lower than the historic petroleum industry drill rates, indicating that decarbonization via CCS is a highly credible and affordable ambition for modern human society. Several technology developments are needed to reduce deployment costs and to stimulate widespread adoption of this technology, and these should focus on demonstration of long-term retention and safety of CO<sub>2</sub> storage and development of smart ways of handling injection wells and pressure, cost-effective monitoring solutions, and deployment of CCS hubs with associated infrastructure.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38893888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emerging Biomedical Applications Based on the Response of Magnetic Nanoparticles to Time-Varying Magnetic Fields.","authors":"Angelie Rivera-Rodriguez, Carlos M Rinaldi-Ramos","doi":"10.1146/annurev-chembioeng-102720-015630","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-102720-015630","url":null,"abstract":"<p><p>Magnetic nanoparticles are of interest for biomedical applications because of their biocompatibility, tunable surface chemistry, and actuation using applied magnetic fields. Magnetic nanoparticles respond to time-varying magnetic fields via physical particle rotation or internal dipole reorientation, which can result in signal generation or conversion of magnetic energy to heat. This dynamic magnetization response enables their use as tracers in magnetic particle imaging (MPI), an emerging biomedical imaging modality in which signal is quantitative of tracer mass and there is no tissue background signal or signal attenuation. Conversion of magnetic energy to heat motivates use in nanoscale thermal cancer therapy, magnetic actuation of drug release, and rapid rewarming of cryopreserved organs. This review introduces basic concepts of magnetic nanoparticle response to time-varying magnetic fields and presents recent advances in the field, with an emphasis on MPI and conversion of magnetic energy to heat.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38875254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of Nanoporous Materials.","authors":"M Thommes, C Schlumberger","doi":"10.1146/annurev-chembioeng-061720-081242","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-061720-081242","url":null,"abstract":"<p><p>Detailed analysis of textural properties, e.g., pore size and connectivity, of nanoporous materials is essential to identify correlations of these properties with the performance of gas storage, separation, and catalysis processes. The advances in developing nanoporous materials with uniform, tailor-made pore structures, including the introduction of hierarchical pore systems, offer huge potential for these applications. Within this context, major progress has been made in understanding the adsorption and phase behavior of confined fluids and consequently in physisorption characterization. This enables reliable pore size, volume, and network connectivity analysis using advanced, high-resolution experimental protocols coupled with advanced methods based on statistical mechanics, such as methods based on density functional theory and molecular simulation. If macro-pores are present, a combination of adsorption and mercury porosimetry can be useful. Hence, some important recent advances in understanding the mercury intrusion/extrusion mechanism are discussed. Additionally, some promising complementary techniques for characterization of porous materials immersed in a liquid phase are introduced.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25520082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Developments in Solvent-Based Fluid Separations.","authors":"Boelo Schuur, Thomas Brouwer, Lisette M J Sprakel","doi":"10.1146/annurev-chembioeng-102620-015346","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-102620-015346","url":null,"abstract":"<p><p>The most important developments in solvent-based fluid separations, separations involving at least one fluid phase, are reviewed. After a brief introduction and discussion on general solvent trends observed in all fields of application, several specific fields are discussed. Important solvent trends include replacement of traditional molecular solvents by ionic liquids and deep eutectic solvents and, more recently, increasing discussion around bio-based solvents in some application fields. Furthermore, stimuli-responsive systems are discussed; the most significant developments in this field are seen for CO<sub>2</sub>-switchable and redox-responsive solvents. Discussed fields of application include hydrocarbons separations, carbon capture, biorefineries, and metals separations. For all but the hydrocarbons separations, newly reported electrochemically mediated separations seem to offer exciting new windows of opportunities.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25587875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Souvik Ghosal, Javon E Walker, Christopher A Alabi
{"title":"Predictive Platforms of Bond Cleavage and Drug Release Kinetics for Macromolecule-Drug Conjugates.","authors":"Souvik Ghosal, Javon E Walker, Christopher A Alabi","doi":"10.1146/annurev-chembioeng-091720-030636","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-091720-030636","url":null,"abstract":"<p><p>Macromolecule-drug conjugates (MDCs) occupy a critical niche in modern pharmaceuticals that deals with the assembly and combination of a macromolecular carrier, a drug cargo, and a linker toward the creation of effective therapeutics. Macromolecular carriers such as synthetic biocompatible polymers and proteins are often exploited for their inherent ability to improve drug circulation, prevent off-target drug cytotoxicity, and widen the therapeutic index of drugs. One of the most significant challenges in MDC design involves tuning their drug release kinetics to achieve high spatiotemporal precision. This level of control requires a thorough qualitative and quantitative understanding of the bond cleavage event. In this review, we highlight specific research findings that emphasize the importance of establishing a precise structure-function relationship for MDCs that can be used to predict their bond cleavage and drug release kinetic parameters.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25487121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}