{"title":"软材料与生物材料工程中的数据驱动设计与自主实验。","authors":"Andrew L. Ferguson, Keith A. Brown","doi":"10.1146/annurev-chembioeng-092120-020803","DOIUrl":null,"url":null,"abstract":"This article reviews recent developments in the applications of machine learning, data-driven modeling, transfer learning, and autonomous experimentation for the discovery, design, and optimization of soft and biological materials. The design and engineering of molecules and molecular systems have long been a preoccupation of chemical and biomolecular engineers using a variety of computational and experimental techniques. Increasingly, researchers have looked to emerging and established tools in artificial intelligence and machine learning to integrate with established approaches in chemical science to realize powerful, efficient, and in some cases autonomous platforms for molecular discovery, materials engineering, and process optimization. This review summarizes the basic principles underpinning these techniques and highlights recent successful example applications in autonomous materials discovery, transfer learning, and multi-fidelity active learning. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Data-Driven Design and Autonomous Experimentation in Soft and Biological Materials Engineering.\",\"authors\":\"Andrew L. Ferguson, Keith A. Brown\",\"doi\":\"10.1146/annurev-chembioeng-092120-020803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article reviews recent developments in the applications of machine learning, data-driven modeling, transfer learning, and autonomous experimentation for the discovery, design, and optimization of soft and biological materials. The design and engineering of molecules and molecular systems have long been a preoccupation of chemical and biomolecular engineers using a variety of computational and experimental techniques. Increasingly, researchers have looked to emerging and established tools in artificial intelligence and machine learning to integrate with established approaches in chemical science to realize powerful, efficient, and in some cases autonomous platforms for molecular discovery, materials engineering, and process optimization. This review summarizes the basic principles underpinning these techniques and highlights recent successful example applications in autonomous materials discovery, transfer learning, and multi-fidelity active learning. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":8234,\"journal\":{\"name\":\"Annual review of chemical and biomolecular engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2022-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of chemical and biomolecular engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-chembioeng-092120-020803\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-092120-020803","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Data-Driven Design and Autonomous Experimentation in Soft and Biological Materials Engineering.
This article reviews recent developments in the applications of machine learning, data-driven modeling, transfer learning, and autonomous experimentation for the discovery, design, and optimization of soft and biological materials. The design and engineering of molecules and molecular systems have long been a preoccupation of chemical and biomolecular engineers using a variety of computational and experimental techniques. Increasingly, researchers have looked to emerging and established tools in artificial intelligence and machine learning to integrate with established approaches in chemical science to realize powerful, efficient, and in some cases autonomous platforms for molecular discovery, materials engineering, and process optimization. This review summarizes the basic principles underpinning these techniques and highlights recent successful example applications in autonomous materials discovery, transfer learning, and multi-fidelity active learning. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.