Annual review of chemical and biomolecular engineering最新文献

筛选
英文 中文
Models for Decarbonization in the Chemical Industry. 化工行业的脱碳模式。
IF 7.6 2区 工程技术
Annual review of chemical and biomolecular engineering Pub Date : 2024-07-01 Epub Date: 2024-07-03 DOI: 10.1146/annurev-chembioeng-100522-114115
Yuan Yao, Kai Lan, Thomas E Graedel, Narasimha D Rao
{"title":"Models for Decarbonization in the Chemical Industry.","authors":"Yuan Yao, Kai Lan, Thomas E Graedel, Narasimha D Rao","doi":"10.1146/annurev-chembioeng-100522-114115","DOIUrl":"10.1146/annurev-chembioeng-100522-114115","url":null,"abstract":"<p><p>Various technologies and strategies have been proposed to decarbonize the chemical industry. Assessing the decarbonization, environmental, and economic implications of these technologies and strategies is critical to identifying pathways to a more sustainable industrial future. This study reviews recent advancements and integration of systems analysis models, including process analysis, material flow analysis, life cycle assessment, techno-economic analysis, and machine learning. These models are categorized based on analytical methods and application scales (i.e., micro-, meso-, and macroscale) for promising decarbonization technologies (e.g., carbon capture, storage, and utilization, biomass feedstock, and electrification) and circular economy strategies. Incorporating forward-looking, data-driven approaches into existing models allows for optimizing complex industrial systems and assessing future impacts. Although advances in industrial ecology-, economic-, and planetary boundary-based modeling support a more holistic systems-level assessment, more efforts are needed to consider impacts on ecosystems. Effective applications of these advanced, integrated models require cross-disciplinary collaborations across chemical engineering, industrial ecology, and economics.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139563267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction. 介绍。
IF 7.6 2区 工程技术
Annual review of chemical and biomolecular engineering Pub Date : 2024-07-01 DOI: 10.1146/annurev-ch-15-040824-100001
Michael F Doherty, Rachel A Segalman, Ravi S Kane
{"title":"Introduction.","authors":"Michael F Doherty, Rachel A Segalman, Ravi S Kane","doi":"10.1146/annurev-ch-15-040824-100001","DOIUrl":"https://doi.org/10.1146/annurev-ch-15-040824-100001","url":null,"abstract":"","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reassessing the Standard Chemotaxis Framework for Understanding Biased Migration in Helicobacter pylori. 重新评估理解幽门螺杆菌偏性迁移的标准趋化性框架。
IF 7.6 2区 工程技术
Annual review of chemical and biomolecular engineering Pub Date : 2024-07-01 Epub Date: 2024-07-03 DOI: 10.1146/annurev-chembioeng-100722-114625
Jyot D Antani, Aakansha Shaji, Rachit Gupta, Pushkar P Lele
{"title":"Reassessing the Standard Chemotaxis Framework for Understanding Biased Migration in <i>Helicobacter pylori</i>.","authors":"Jyot D Antani, Aakansha Shaji, Rachit Gupta, Pushkar P Lele","doi":"10.1146/annurev-chembioeng-100722-114625","DOIUrl":"10.1146/annurev-chembioeng-100722-114625","url":null,"abstract":"<p><p><i>Helicobacter pylori</i> infections are a major cause of peptic ulcers and gastric cancers. The development of robust inflammation in response to these flagellated, motile bacteria is correlated with poor prognosis. Chemotaxis plays a crucial role in <i>H. pylori</i> colonization, enabling the bacteria to swim toward favorable chemical environments. Unlike the model species of bacterial chemotaxis, <i>Escherichia coli</i>, <i>H. pylori</i> cells possess polar flagella. They run forward by rotating their flagella counterclockwise, whereas backward runs are achieved by rotating their flagella clockwise. We delve into the implications of certain features of the canonical model of chemotaxis on our understanding of biased migration in polarly flagellated bacteria such as <i>H. pylori</i>. In particular, we predict how the translational displacement of <i>H. pylori</i> cells during a backward run could give rise to chemotaxis errors within the canonical framework. Also, <i>H. pylori</i> lack key chemotaxis enzymes found in <i>E. coli</i>, without which sensitive detection of ligands with a wide dynamic range seems unlikely. Despite these problems, <i>H. pylori</i> exhibit robust ability to migrate toward urea-rich sources. We emphasize various unresolved questions regarding the biophysical mechanisms of chemotaxis in <i>H. pylori</i>, shedding light on potential directions for future research. Understanding the intricacies of biased migration in <i>H. pylori</i> could offer valuable insights into how pathogens breach various protective barriers in the human host.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138481848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Will Hydrogen Be a New Natural Gas? Hydrogen Integration in Natural Gas Grids. 氢气会成为新的天然气吗?天然气电网中的氢整合。
IF 7.6 2区 工程技术
Annual review of chemical and biomolecular engineering Pub Date : 2024-07-01 DOI: 10.1146/annurev-chembioeng-100522-110306
Gerald Linke
{"title":"Will Hydrogen Be a New Natural Gas? Hydrogen Integration in Natural Gas Grids.","authors":"Gerald Linke","doi":"10.1146/annurev-chembioeng-100522-110306","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-100522-110306","url":null,"abstract":"<p><p>Hydrogen is similar to natural gas in terms of its physical and chemical properties but does not release carbon dioxide when burnt. This makes hydrogen an energy carrier of great importance in climate policy, especially as an enabler of increasing integration of volatile renewable energy, progressive electrification, and effective emission reductions in the hard-to-decarbonize sectors. Leaving aside the problems of transporting hydrogen as a liquid, technological challenges along the entire supply chain can be considered as solved in principle, as shown in the experimental findings of the Hydrogen Innovation Program of the German Technical and Scientific Association for Gas and Water. By scaling up production and end-use capacities and, most importantly, producing hydrogen in regions with abundant renewable energy, hydrogen and its applications can displace natural gas at affordable prices in the medium term. However, this substitution will take place at different rates in different regions and with different levels of added value, all of which must be understood for hydrogen uptake to be successful.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluid Ejections in Nature 自然界中的流体喷射
IF 8.4 2区 工程技术
Annual review of chemical and biomolecular engineering Pub Date : 2024-04-26 DOI: 10.1146/annurev-chembioeng-100722-113148
Elio J. Challita, Pankaj Rohilla, M. Saad Bhamla
{"title":"Fluid Ejections in Nature","authors":"Elio J. Challita, Pankaj Rohilla, M. Saad Bhamla","doi":"10.1146/annurev-chembioeng-100722-113148","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-100722-113148","url":null,"abstract":"From microscopic fungi to colossal whales, fluid ejections are universal and intricate phenomena in biology, serving vital functions such as animal excretion, venom spraying, prey hunting, spore dispersal, and plant guttation. This review delves into the complex fluid physics of ejections across various scales, exploring both muscle-powered active systems and passive mechanisms driven by gravity or osmosis. It introduces a framework using dimensionless numbers to delineate transitions from dripping to jetting and elucidate the governing forces. Highlighting the understudied area of complex fluid ejections, this review not only rationalizes the biophysics involved but also uncovers potential engineering applications in soft robotics, additive manufacturing, and drug delivery. By bridging biomechanics, the physics of living systems, and fluid dynamics, this review offers valuable insights into the diverse world of fluid ejections and paves the way for future bioinspired research across the spectrum of life.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140805637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical Mineral Separations: Opportunities for Membrane Materials and Processes to Advance Sustainable Economies and Secure Supplies. 关键矿物分离:膜材料和工艺促进可持续经济和安全供应的机遇。
IF 8.4 2区 工程技术
Annual review of chemical and biomolecular engineering Pub Date : 2024-04-25 DOI: 10.1146/annurev-chembioeng-100722-114853
Laurianne Lair, J. A. Ouimet, Molly Dougher, B. Boudouris, Alexander W. Dowling, William A Phillip
{"title":"Critical Mineral Separations: Opportunities for Membrane Materials and Processes to Advance Sustainable Economies and Secure Supplies.","authors":"Laurianne Lair, J. A. Ouimet, Molly Dougher, B. Boudouris, Alexander W. Dowling, William A Phillip","doi":"10.1146/annurev-chembioeng-100722-114853","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-100722-114853","url":null,"abstract":"Sustainable energy solutions and electrification are driving increased demand for critical minerals. Unfortunately, current mineral processing techniques are resource intensive, use large quantities of hazardous chemicals, and occur at centralized facilities to realize economies of scale. These aspects of existing technologies are at odds with the sustainability goals driving increased demand for critical minerals. Here, we argue that the small footprint and modular nature of membrane technologies position them well to address declining concentrations in ores and brines, the variable feed concentrations encountered in recycling, and the environmental issues associated with current separation processes; thus, membrane technologies provide new sustainable pathways to strengthening resilient critical mineral supply chains. The success of creating circular economies hinges on overcoming diverse barriers across the molecular to infrastructure scales. As such, solving these challenges requires the convergence of research across disciplines rather than isolated innovations.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140653187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional Material Building Blocks from Plant Pollen. 从植物花粉中提取多功能材料构件
IF 8.4 2区 工程技术
Annual review of chemical and biomolecular engineering Pub Date : 2024-04-25 DOI: 10.1146/annurev-chembioeng-101121-085959
Chenchen Zhou, Jingyu Deng, Tay Jie Hao, Snehasish Basu, Jueying Yang, Jian Li, Chungmo Yang, Ze Zhao, Nam-Joon Cho
{"title":"Multifunctional Material Building Blocks from Plant Pollen.","authors":"Chenchen Zhou, Jingyu Deng, Tay Jie Hao, Snehasish Basu, Jueying Yang, Jian Li, Chungmo Yang, Ze Zhao, Nam-Joon Cho","doi":"10.1146/annurev-chembioeng-101121-085959","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-101121-085959","url":null,"abstract":"With its multifaceted nature, plant pollen serves not only as a key element in the reproductive cycle of seed plants but also as an influential contributor to environmental, human health, safety, and climate-related concerns. Pollen functions as a carrier of nutrients and organisms and holds a pivotal role in sustaining pollinator populations. Moreover, it is vital in ensuring the safety and quality of our food supply while presenting potential therapeutic applications. Pollen, often referred to as the diamond of the organic world due to its distinctive physical structures and properties, has been underappreciated from a material science and engineering standpoint. We propose adopting a more interdisciplinary and comprehensive approach to its study. Recent groundbreaking research has focused on the development of pollen-based building blocks that transform practically indestructible plant pollen into microgel, paper, and sponge, thereby unveiling numerous potential applications. In this review, we highlight the transformative potential of plant pollen as it is converted into a variety of building blocks, thereby unlocking myriad prospective applications through eco-friendly processing.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140656761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological Upcycling of Plastics Waste 塑料废弃物的生物升级再造
IF 8.4 2区 工程技术
Annual review of chemical and biomolecular engineering Pub Date : 2024-04-15 DOI: 10.1146/annurev-chembioeng-100522-115850
Ross R. Klauer, D. Alex Hansen, Derek Wu, Lummy Maria Oliveira Monteiro, Kevin V. Solomon, Mark A. Blenner
{"title":"Biological Upcycling of Plastics Waste","authors":"Ross R. Klauer, D. Alex Hansen, Derek Wu, Lummy Maria Oliveira Monteiro, Kevin V. Solomon, Mark A. Blenner","doi":"10.1146/annurev-chembioeng-100522-115850","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-100522-115850","url":null,"abstract":"Plastic wastes accumulate in the environment, impacting wildlife and human health and representing a significant pool of inexpensive waste carbon that could form feedstock for the sustainable production of commodity chemicals, monomers, and specialty chemicals. Current mechanical recycling technologies are not economically attractive due to the lower-quality plastics that are produced in each iteration. Thus, the development of a plastics economy requires a solution that can deconstruct plastics and generate value from the deconstruction products. Biological systems can provide such value by allowing for the processing of mixed plastics waste streams via enzymatic specificity and using engineered metabolic pathways to produce upcycling targets. We focus on the use of biological systems for waste plastics deconstruction and upcycling. We highlight documented and predicted mechanisms through which plastics are biologically deconstructed and assimilated and provide examples of upcycled products from biological systems. Additionally, we detail current challenges in the field, including the discovery and development of microorganisms and enzymes for deconstructing non–polyethylene terephthalate plastics, the selection of appropriate target molecules to incentivize development of a plastic bioeconomy, and the selection of microbial chassis for the valorization of deconstruction products.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140571712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications 用于原核系统工程的 CRISPR 工具:最新进展和新应用
IF 8.4 2区 工程技术
Annual review of chemical and biomolecular engineering Pub Date : 2024-04-10 DOI: 10.1146/annurev-chembioeng-100522-114706
Diego Alba Burbano, Cholpisit Kiattisewee, Ava V. Karanjia, Ryan A.L. Cardiff, Ian D. Faulkner, Widianti Sugianto, James M. Carothers
{"title":"CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications","authors":"Diego Alba Burbano, Cholpisit Kiattisewee, Ava V. Karanjia, Ryan A.L. Cardiff, Ian D. Faulkner, Widianti Sugianto, James M. Carothers","doi":"10.1146/annurev-chembioeng-100522-114706","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-100522-114706","url":null,"abstract":"In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140571749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced Modeling and Optimization Strategies for Process Synthesis 工艺合成的高级建模和优化策略
IF 8.4 2区 工程技术
Annual review of chemical and biomolecular engineering Pub Date : 2024-04-10 DOI: 10.1146/annurev-chembioeng-100522-112139
Efstratios N. Pistikopoulos, Yuhe Tian
{"title":"Advanced Modeling and Optimization Strategies for Process Synthesis","authors":"Efstratios N. Pistikopoulos, Yuhe Tian","doi":"10.1146/annurev-chembioeng-100522-112139","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-100522-112139","url":null,"abstract":"This article provides a systematic review of recent progress in optimization-based process synthesis. First, we discuss multiscale modeling frameworks featuring targeting approaches, phenomena-based modeling, unit operation–based modeling, and hybrid modeling. Next, we present the expanded scope of process synthesis objectives, highlighting the considerations of sustainability and operability to assure cost-competitive production in an increasingly dynamic market with growing environmental awareness. Then, we review advances in optimization algorithms and tools, including emerging machine learning–and quantum computing–assisted approaches. We conclude by summarizing the advances in and perspectives for process synthesis strategies.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140571721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信