News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society最新文献
{"title":"Found: Na(+) and K(+) binding sites of the sodium pump.","authors":"R F Rakowski, S Sagar","doi":"10.1152/nips.01441.2003","DOIUrl":"https://doi.org/10.1152/nips.01441.2003","url":null,"abstract":"<p><p>Homology modeling and valence mapping have been used to predict the location and structure of Na(+) and K(+) binding sites in the Na(+)-K(+)-ATPase on the basis of the known atomic resolution structure of SERCA. Additional sites are predicted that may be associated with intracellular access and extracellular egress pathways for Na(+). The model predictions are in excellent agreement with previous structure-function and electrical studies.</p>","PeriodicalId":82140,"journal":{"name":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","volume":"18 ","pages":"164-8"},"PeriodicalIF":0.0,"publicationDate":"2003-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/nips.01441.2003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22489955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functional imaging of physiological processes by positron emission tomography.","authors":"Gerrit Westera, P August Schubiger","doi":"10.1152/nips.01420.2002","DOIUrl":"https://doi.org/10.1152/nips.01420.2002","url":null,"abstract":"<p><p>Tracer technology makes it possible to observe physiological and biochemical processes in the living organism in a dynamic mode. Positron emission tomography adds the use of chemically unchanged biomolecules and of quantification. This opens up fascinating possibilities for both fundamental research and routine diagnostic applications.</p>","PeriodicalId":82140,"journal":{"name":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","volume":"18 ","pages":"175-8"},"PeriodicalIF":0.0,"publicationDate":"2003-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/nips.01420.2002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22489957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pulmonary surfactant: the key to the evolution of air breathing.","authors":"Christopher B Daniels, Sandra Orgeig","doi":"10.1152/nips.01438.2003","DOIUrl":"https://doi.org/10.1152/nips.01438.2003","url":null,"abstract":"Pulmonary surfactant controls the surface tension at the air-liquid interface within the lung. This system had a single evolutionary origin that predates the evolution of the vertebrates and lungs. The lipid composition of surfactant has been subjected to evolutionary selection pressures, particularly temperature, throughout the evolution of the vertebrates.","PeriodicalId":82140,"journal":{"name":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","volume":"18 ","pages":"151-7"},"PeriodicalIF":0.0,"publicationDate":"2003-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/nips.01438.2003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22489953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Apical entry channels in calcium-transporting epithelia.","authors":"Ji-Bin Peng, Edward M Brown, Matthias A Hediger","doi":"10.1152/nips.01440.2003","DOIUrl":"https://doi.org/10.1152/nips.01440.2003","url":null,"abstract":"<p><p>The identification of the apical calcium channels CaT1 and ECaC revealed the key molecular mechanisms underlying apical calcium entry in calcium-transporting epithelia. These channels are regulated directly or indirectly by vitamin D and dietary calcium and undergo feedback control by intracellular calcium, suggesting their rate-limiting roles in transcellular calcium transport.</p>","PeriodicalId":82140,"journal":{"name":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","volume":"18 ","pages":"158-63"},"PeriodicalIF":0.0,"publicationDate":"2003-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/nips.01440.2003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22489954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immune adherence revisited: novel players in an old game.","authors":"Christoph Hess, Jürg A Schifferli","doi":"10.1152/nips.01425.2002","DOIUrl":"https://doi.org/10.1152/nips.01425.2002","url":null,"abstract":"<p><p>Erythrocytes bind immune complexes (ICs) composed of antibodies binding their respective antigen (e.g., bacteria, parasites, viruses, or autoantigen) plus complement proteins via complement receptors [immune adherence (IA)]. In vivo studies have shown that erythrocytes act as an inert shuttle, targeting ICs to fixed macrophages in liver and spleen. Here we outline established and emerging implications of IA in health and disease.</p>","PeriodicalId":82140,"journal":{"name":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","volume":"18 ","pages":"104-8"},"PeriodicalIF":0.0,"publicationDate":"2003-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/nips.01425.2002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22388757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mitochondrial regulation of apoptosis.","authors":"Bernd Mayer, Rainer Oberbauer","doi":"10.1152/nips.01433.2002","DOIUrl":"https://doi.org/10.1152/nips.01433.2002","url":null,"abstract":"<p><p>Mitochondria play a central part in cellular survival and apoptotic death. These processes are highly regulated by pro- and antiapoptotic Bcl-2 superfamily members. A key feature within apoptosis cascades is disruption of mitochondrial transmembrane potential and apoptogenic protein release, caused by opening of the permeability transition pore (PT). New data, however, indicate that mitochondrial apoptosis may occur without PT involvement.</p>","PeriodicalId":82140,"journal":{"name":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","volume":"18 ","pages":"89-94"},"PeriodicalIF":0.0,"publicationDate":"2003-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/nips.01433.2002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22388754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New roles for connexons.","authors":"Lisa Ebihara","doi":"10.1152/nips.01431.2002","DOIUrl":"10.1152/nips.01431.2002","url":null,"abstract":"<p><p>Connexons or gap junction hemichannels are large, nonselective ion channels that reside in the nonjunctional plasma membrane before their assembly into gap junction channels. Increasing evidence suggests that these channels can open under certain conditions and may participate in a number of cellular processes, including the release of small metabolites such as ATP and NAD(+), which are involved in paracrine signaling.</p>","PeriodicalId":82140,"journal":{"name":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","volume":"18 ","pages":"100-3"},"PeriodicalIF":0.0,"publicationDate":"2003-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22388756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functional modulation of the sodium pump: the regulatory proteins \"Fixit\".","authors":"Flemming Cornelius, Yasser A Mahmmoud","doi":"10.1152/nips.01434.2003","DOIUrl":"https://doi.org/10.1152/nips.01434.2003","url":null,"abstract":"<p><p>Proteins of the FXYD family act as tissue-specific regulators of the Na-K-ATPase. They are small hydrophobic type I proteins with a single-transmembrane span containing an extracellular invariant FXYD sequence. FXYD proteins are not an integral part of the Na-K-ATPase but function to modulate its catalytic properties by molecular interactions with specific Na-K-ATPase domains.</p>","PeriodicalId":82140,"journal":{"name":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","volume":"18 ","pages":"119-24"},"PeriodicalIF":0.0,"publicationDate":"2003-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/nips.01434.2003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22388760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonredundant gap junction functions.","authors":"Thomas W White","doi":"10.1152/nips.01430.2002","DOIUrl":"https://doi.org/10.1152/nips.01430.2002","url":null,"abstract":"<p><p>The need for molecular heterogeneity of gap junction channel proteins in vivo has been enigmatic. Recently, functional replacement of one channel gene with another in mice and flies has revealed that cellular health depends not simply on gap junction communication but also requires the correct type of intercellular channel subunit.</p>","PeriodicalId":82140,"journal":{"name":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","volume":"18 ","pages":"95-9"},"PeriodicalIF":0.0,"publicationDate":"2003-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/nips.01430.2002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22388755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vesicle-mediated restoration of a plasmalemmal barrier in severed axons.","authors":"Harvey M Fishman, George D Bittner","doi":"10.1152/nips.01429.2002","DOIUrl":"https://doi.org/10.1152/nips.01429.2002","url":null,"abstract":"<p><p>Ca(2+)-induced endocytotic vesicles undergo protein-mediated interactions to restore a selectively permeable barrier and propagated action potentials in severed invertebrate giant axons. Similar barrier-restoration phenomena observed in cultured mammalian cells with transected neurites suggest that cellular/molecular mechanisms that repair plasmalemmal damage are phylogenetically conserved.</p>","PeriodicalId":82140,"journal":{"name":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","volume":"18 ","pages":"115-8"},"PeriodicalIF":0.0,"publicationDate":"2003-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/nips.01429.2002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"22388759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}