Applied Numerical Mathematics最新文献

筛选
英文 中文
A new class of symplectic methods for stochastic Hamiltonian systems 随机哈密顿系统的新一类交映法
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.apnum.2024.01.021
Cristina Anton
{"title":"A new class of symplectic methods for stochastic Hamiltonian systems","authors":"Cristina Anton","doi":"10.1016/j.apnum.2024.01.021","DOIUrl":"10.1016/j.apnum.2024.01.021","url":null,"abstract":"<div><div>We propose a systematic approach to construct a new family of stochastic symplectic schemes for the strong approximation of the solution of stochastic Hamiltonian systems. Our approach is based both on B-series and generating functions. The proposed schemes are a generalization of the implicit midpoint rule, they require derivatives of the Hamiltonian functions of at most order two, and are constructed by defining a generating function. We construct some schemes with strong convergence order one and a half, and we illustrate numerically their long term performance.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 43-59"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139657336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Krylov subspace methods for large multidimensional eigenvalue computation 用于大型多维特征值计算的克雷洛夫子空间方法
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.apnum.2024.01.017
Anas El Hachimi , Khalide Jbilou , Ahmed Ratnani
{"title":"Krylov subspace methods for large multidimensional eigenvalue computation","authors":"Anas El Hachimi ,&nbsp;Khalide Jbilou ,&nbsp;Ahmed Ratnani","doi":"10.1016/j.apnum.2024.01.017","DOIUrl":"10.1016/j.apnum.2024.01.017","url":null,"abstract":"<div><div><span>In this paper, we describe some Krylov subspace methods for computing eigentubes and </span>eigenvectors (eigenslices) for large and sparse third-order tensors. This work provides projection methods for computing some of the largest (or smallest) eigentubes and eigenslices using the t-product. In particular, we use the tensor Arnoldi's approach for the non-hermitian case and the tensor Lanczos's approach for f-hermitian tensors. We also use the tensor block Arnoldi method to approximate the extreme eigentubes of a large tensor. Computed examples are given to illustrate the effectiveness of these methods.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 205-221"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139657341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An inverse problem of determining the parameters in diffusion equations by using fractional physics-informed neural networks
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.apnum.2024.10.016
M. Srati , A. Oulmelk , L. Afraites , A. Hadri , M.A. Zaky , A. Aldraiweesh , A.S. Hendy
{"title":"An inverse problem of determining the parameters in diffusion equations by using fractional physics-informed neural networks","authors":"M. Srati ,&nbsp;A. Oulmelk ,&nbsp;L. Afraites ,&nbsp;A. Hadri ,&nbsp;M.A. Zaky ,&nbsp;A. Aldraiweesh ,&nbsp;A.S. Hendy","doi":"10.1016/j.apnum.2024.10.016","DOIUrl":"10.1016/j.apnum.2024.10.016","url":null,"abstract":"<div><div>In this study, we address an inverse problem in nonlinear time-fractional diffusion equations using a deep neural network. The challenge arises from the equation's nonlinear behavior, the involvement of time-based fractional Caputo derivatives, and the need to estimate parameters influenced by space or the solution of the fractional PDE. Our solution involves a fractional physics-informed neural network (FPINN). Initially, we use FPINN to solve a straightforward problem. Then, we apply FPINN to the inverse problem of estimating parameter and model non-linearity. For the inverse problem, we enhance our method by including the mean square error of final observations in the FPINN's cost function. This adjustment helps effectively in tackling the unique challenges of the time-fractional diffusion equation. Numerical tests involving regular and singular examples demonstrate the effectiveness of the physics-informed neural network approach in accurately recovering parameters. We reinforce this finding through a numerical comparison with alternative methods such as the alternating direction multiplier method (ADMM), the gradient descent, and the DeepONets (deep operator networks) method.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 189-213"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143141227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two efficient iteration methods for solving the absolute value equations
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.apnum.2024.10.009
Xiaohui Yu , Qingbiao Wu
{"title":"Two efficient iteration methods for solving the absolute value equations","authors":"Xiaohui Yu ,&nbsp;Qingbiao Wu","doi":"10.1016/j.apnum.2024.10.009","DOIUrl":"10.1016/j.apnum.2024.10.009","url":null,"abstract":"<div><div>Two efficient iteration methods are proposed for solving the absolute value equation which are the accelerated generalized SOR-like (AGSOR-like) iteration method and the preconditioned generalized SOR-like (PGSOR-like) iteration method. We prove the convergence of the two proposed iterative methods after applying some qualification conditions to the parameters involved. We also discuss the optimal values of the parameters involved in the two methods. Also, some numerical experiments demonstrate the practicability, robustness and high efficiency of the two new methods. In addition, applying the optimal parameter values obtained from theoretical analysis to the PGSOR-like method, it can give solutions with high accuracy after a small number of iterations, demonstrating significant advantages.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 148-159"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143141569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implicit EXP-RBF techniques for modeling unsaturated flow through soils with water uptake by plant roots
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.apnum.2024.10.003
Mohamed Boujoudar , Abdelaziz Beljadid , Ahmed Taik
{"title":"Implicit EXP-RBF techniques for modeling unsaturated flow through soils with water uptake by plant roots","authors":"Mohamed Boujoudar ,&nbsp;Abdelaziz Beljadid ,&nbsp;Ahmed Taik","doi":"10.1016/j.apnum.2024.10.003","DOIUrl":"10.1016/j.apnum.2024.10.003","url":null,"abstract":"<div><div>Modeling unsaturated flow through soils with water uptake by plant root has many applications in agriculture and water resources management. In this study, our aim is to develop efficient numerical techniques for solving the Richards equation with a sink term due to plant root water uptake. The Feddes model is used for water absorption by plant roots, and the van-Genuchten model is employed for capillary pressure. We introduce a numerical approach that combines the localized exponential radial basis function (EXP-RBF) method for space and the second-order backward differentiation formula (BDF2) for temporal discretization. The localized RBF methods eliminate the need for mesh generation and avoid ill-conditioning problems. This approach yields a sparse matrix for the global system, optimizing memory usage and computational time. The proposed implicit EXP-RBF techniques have advantages in terms of accuracy and computational efficiency thanks to the use of BDF2 and the localized RBF method. Modified Picards iteration method for the mixed form of the Richards equation is employed to linearize the system. Various numerical experiments are conducted to validate the proposed numerical model of infiltration with plant root water absorption. The obtained results conclusively demonstrate the effectiveness of the proposed numerical model in accurately predicting soil moisture dynamics under water uptake by plant roots. The proposed numerical techniques can be incorporated in the numerical models where unsaturated flows and water uptake by plant roots are involved such as in hydrology, agriculture, and water management.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 79-97"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143097230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On some nonlocal in time and space parabolic problem
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.apnum.2024.11.001
Sandra Carillo , Michel Chipot
{"title":"On some nonlocal in time and space parabolic problem","authors":"Sandra Carillo ,&nbsp;Michel Chipot","doi":"10.1016/j.apnum.2024.11.001","DOIUrl":"10.1016/j.apnum.2024.11.001","url":null,"abstract":"<div><div>The goal of this note is to study nonlinear parabolic problems nonlocal in time and space. We first establish the existence of a solution and its uniqueness in certain cases. Finally we consider its asymptotic behaviour.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 314-322"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143097233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extrapolated splitting methods for multilinear PageRank computations 多线性PageRank计算的外推拆分方法
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.apnum.2023.11.019
Maryam Boubekraoui
{"title":"Extrapolated splitting methods for multilinear PageRank computations","authors":"Maryam Boubekraoui","doi":"10.1016/j.apnum.2023.11.019","DOIUrl":"10.1016/j.apnum.2023.11.019","url":null,"abstract":"<div><div>Multilinear PageRank is a variant of the well-known PageRank model. With this model, web page ranking can be more accurate and efficient by taking into account higher-order connections between pages. The higher-order power method is commonly employed for computing the multilinear PageRank vector, since it is a natural extension of the traditional power method used in the PageRank algorithm. However, this method may not be efficient when the hyperlink<span> tensor becomes large or the damping factor value fails to meet the necessary conditions for convergence. In this work, we propose a novel approach to efficiently computing the multilinear PageRank vector using tensor splitting and vector extrapolation methods.</span></div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 92-103"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical properties of solutions of LASSO regression LASSO 回归解的数值特性
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.apnum.2024.03.010
Mayur V. Lakshmi , Joab R. Winkler
{"title":"Numerical properties of solutions of LASSO regression","authors":"Mayur V. Lakshmi ,&nbsp;Joab R. Winkler","doi":"10.1016/j.apnum.2024.03.010","DOIUrl":"10.1016/j.apnum.2024.03.010","url":null,"abstract":"&lt;div&gt;&lt;div&gt;The determination of a concise model of a linear system when there are fewer samples &lt;em&gt;m&lt;/em&gt; than predictors &lt;em&gt;n&lt;/em&gt; requires the solution of the equation &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mtext&gt;rank&lt;/mtext&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, such that the selected solution from the infinite number of solutions is sparse, that is, many of its components are zero. This leads to the minimisation with respect to &lt;em&gt;x&lt;/em&gt; of &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;em&gt;λ&lt;/em&gt; is the regularisation parameter. This problem, which is called LASSO regression, yields a family of functions &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;lasso&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and it is necessary to determine the optimal value of &lt;em&gt;λ&lt;/em&gt;, that is, the value of &lt;em&gt;λ&lt;/em&gt; that balances the fidelity of the model, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;lasso&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≈&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, and the satisfaction of the constraint that &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;lasso&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; be sparse. The aim of this paper is an investigation of the numerical properties of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;lasso&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, and the main conclusion of this investigation is the incompatibility of sparsity and stability, that is, a sparse solution &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;lasso&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; that preserves the fidelity of the model exists if the least squares (LS) solution &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;ls&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;†&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is unstable. Two methods, cross validation and the L-curve, for the computation of the optimal value of &lt;em&gt;λ&lt;/em&gt; are compared and it is shown that the L-curve yields significantly better results. This difference between stable and unstable solutions &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;ls&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; of the LS problem manifests itself in the very different forms of the L-curve for these two solutions. The paper includes examples of stable and unstable solutions &lt;span&gt;&lt;math&gt;&lt;ms","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 297-309"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140280391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sparse recovery from quadratic measurements with external field 利用外部磁场从二次测量中进行稀疏恢复
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.apnum.2024.04.012
Augustin Cosse
{"title":"Sparse recovery from quadratic measurements with external field","authors":"Augustin Cosse","doi":"10.1016/j.apnum.2024.04.012","DOIUrl":"10.1016/j.apnum.2024.04.012","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Motivated by recent results in the statistical physics of spin glasses, we study the recovery of a sparse vector &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; denotes the &lt;em&gt;n&lt;/em&gt;-dimensional unit sphere, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, from &lt;em&gt;m&lt;/em&gt; quadratic measurements of the form &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;〈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⊺&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;〉&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;〈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;〉&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; have i.i.d. Gaussian entries. This can be related to a constrained version of the 2-spin Hamiltonian with external field for which it was shown (in the absence of any structural constraint and in the asymptotic regime) in &lt;span&gt;&lt;span&gt;[1]&lt;/span&gt;&lt;/span&gt; that the geometry of the energy landscape becomes trivial above a certain threshold &lt;span&gt;&lt;math&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. Building on this idea, we characterize the recovery of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; as a function of &lt;span&gt;&lt;math&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. We show that recovery of the vector &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; can be guaranteed as soon as &lt;span&gt;&lt;math&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;≳&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∨&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; provided that this vector satisfies a sufficiently strong incoherence condition, thus retrieving the linear regime for an external field &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;≲&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 146-169"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140776633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structured ramp secret sharing schemata over rings of real polynomials 实多项式环上的结构化斜坡秘密共享方案
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2025-02-01 DOI: 10.1016/j.apnum.2024.06.003
Gerasimos C. Meletiou , Nikolaos K. Papadakis , Dimitrios S. Triantafyllou , Michael N. Vrahatis
{"title":"Structured ramp secret sharing schemata over rings of real polynomials","authors":"Gerasimos C. Meletiou ,&nbsp;Nikolaos K. Papadakis ,&nbsp;Dimitrios S. Triantafyllou ,&nbsp;Michael N. Vrahatis","doi":"10.1016/j.apnum.2024.06.003","DOIUrl":"10.1016/j.apnum.2024.06.003","url":null,"abstract":"<div><div>Two new ramp secret sharing schemata based on polynomials are proposed. For both schemata, the secret is considered to be a polynomial created by the dealer. The participants are separated into <span><math><mi>ℓ</mi><mo>⩾</mo><mn>2</mn></math></span>, groups, that are specified by the dealer's levels <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>ℓ</mi></math></span> and each level <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, <span><math><mi>i</mi><mo>⩾</mo><mn>2</mn></math></span>, is separated into subsets. The shares of the secret are given to participants in the form of polynomials. For the first proposed scheme, the dealer creates <em>ℓ</em><span> polynomials one for each level. Specific participants from every subset of each level have to cooperate all together in order to construct the polynomial of their level. Next all the authorized participants cooperate for computing the greatest common divisor of the polynomials in order to retrieve the secret. In the second scheme, the authorized participants cooperate per two levels using a bottom-up procedure. In both schemata the greatest common divisor can be evaluated by implementing numerical linear algebra methods, and precisely factorization of matrices of special form such as Sylvester matrices. The triangularization of these matrices can be obtained by exploiting their special structure for the reduction of the required floating point operations. The innovative idea of the paper at hand is the use of real polynomials in secret sharing schemata. This is particularly useful since the greatest common divisor can always be computed with efficient accuracy using effective numerical methods. New theoretical results are proved and provided that support the error analysis of our approach.</span></div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 317-339"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141389520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信