An inverse problem of determining the parameters in diffusion equations by using fractional physics-informed neural networks

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
M. Srati , A. Oulmelk , L. Afraites , A. Hadri , M.A. Zaky , A. Aldraiweesh , A.S. Hendy
{"title":"An inverse problem of determining the parameters in diffusion equations by using fractional physics-informed neural networks","authors":"M. Srati ,&nbsp;A. Oulmelk ,&nbsp;L. Afraites ,&nbsp;A. Hadri ,&nbsp;M.A. Zaky ,&nbsp;A. Aldraiweesh ,&nbsp;A.S. Hendy","doi":"10.1016/j.apnum.2024.10.016","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we address an inverse problem in nonlinear time-fractional diffusion equations using a deep neural network. The challenge arises from the equation's nonlinear behavior, the involvement of time-based fractional Caputo derivatives, and the need to estimate parameters influenced by space or the solution of the fractional PDE. Our solution involves a fractional physics-informed neural network (FPINN). Initially, we use FPINN to solve a straightforward problem. Then, we apply FPINN to the inverse problem of estimating parameter and model non-linearity. For the inverse problem, we enhance our method by including the mean square error of final observations in the FPINN's cost function. This adjustment helps effectively in tackling the unique challenges of the time-fractional diffusion equation. Numerical tests involving regular and singular examples demonstrate the effectiveness of the physics-informed neural network approach in accurately recovering parameters. We reinforce this finding through a numerical comparison with alternative methods such as the alternating direction multiplier method (ADMM), the gradient descent, and the DeepONets (deep operator networks) method.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 189-213"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002927","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we address an inverse problem in nonlinear time-fractional diffusion equations using a deep neural network. The challenge arises from the equation's nonlinear behavior, the involvement of time-based fractional Caputo derivatives, and the need to estimate parameters influenced by space or the solution of the fractional PDE. Our solution involves a fractional physics-informed neural network (FPINN). Initially, we use FPINN to solve a straightforward problem. Then, we apply FPINN to the inverse problem of estimating parameter and model non-linearity. For the inverse problem, we enhance our method by including the mean square error of final observations in the FPINN's cost function. This adjustment helps effectively in tackling the unique challenges of the time-fractional diffusion equation. Numerical tests involving regular and singular examples demonstrate the effectiveness of the physics-informed neural network approach in accurately recovering parameters. We reinforce this finding through a numerical comparison with alternative methods such as the alternating direction multiplier method (ADMM), the gradient descent, and the DeepONets (deep operator networks) method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信