A new class of symplectic methods for stochastic Hamiltonian systems

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Cristina Anton
{"title":"A new class of symplectic methods for stochastic Hamiltonian systems","authors":"Cristina Anton","doi":"10.1016/j.apnum.2024.01.021","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a systematic approach to construct a new family of stochastic symplectic schemes for the strong approximation of the solution of stochastic Hamiltonian systems. Our approach is based both on B-series and generating functions. The proposed schemes are a generalization of the implicit midpoint rule, they require derivatives of the Hamiltonian functions of at most order two, and are constructed by defining a generating function. We construct some schemes with strong convergence order one and a half, and we illustrate numerically their long term performance.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 43-59"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424000217","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a systematic approach to construct a new family of stochastic symplectic schemes for the strong approximation of the solution of stochastic Hamiltonian systems. Our approach is based both on B-series and generating functions. The proposed schemes are a generalization of the implicit midpoint rule, they require derivatives of the Hamiltonian functions of at most order two, and are constructed by defining a generating function. We construct some schemes with strong convergence order one and a half, and we illustrate numerically their long term performance.
随机哈密顿系统的新一类交映法
我们提出了一种系统的方法来构建新的随机交映方案系列,用于强逼近随机哈密顿系统的解。我们的方法基于 B 序列和生成函数。所提出的方案是隐式中点规则的广义化,它们要求哈密顿函数的导数最多为二阶,并通过定义一个生成函数来构建。我们构建了一些具有一阶半强收敛性的方案,并用数值说明了它们的长期性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信