{"title":"The weak Galerkin finite element method for Stokes interface problems with curved interface","authors":"Lin Yang, Qilong Zhai, Ran Zhang","doi":"10.1016/j.apnum.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we develop a weak Galerkin (WG) finite element scheme for the Stokes interface problems with curved interface. The conventional numerical schemes rely on the use of straight segments to approximate the curved interface and the accuracy is limited by geometric errors. Hence in our method, we directly construct the weak Galerkin finite element space on the curved cells to avoid geometric errors. For the integral calculation on curved cells, we employ non-affine transformations to map curved cells onto the reference element. The optimal error estimates are obtained in both the energy norm and the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm. A series of numerical experiments are provided to validate the efficiency of the proposed WG method.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 98-122"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016892742400271X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we develop a weak Galerkin (WG) finite element scheme for the Stokes interface problems with curved interface. The conventional numerical schemes rely on the use of straight segments to approximate the curved interface and the accuracy is limited by geometric errors. Hence in our method, we directly construct the weak Galerkin finite element space on the curved cells to avoid geometric errors. For the integral calculation on curved cells, we employ non-affine transformations to map curved cells onto the reference element. The optimal error estimates are obtained in both the energy norm and the norm. A series of numerical experiments are provided to validate the efficiency of the proposed WG method.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.