{"title":"An augmented Lagrangian approach for cardinality constrained minimization applied to variable selection problems","authors":"N. Krejić , E.H.M. Krulikovski , M. Raydan","doi":"10.1016/j.apnum.2023.12.006","DOIUrl":null,"url":null,"abstract":"<div><div>To solve convex constrained minimization problems, that also include a cardinality constraint, we propose an augmented Lagrangian scheme combined with alternating projection ideas. Optimization problems that involve a cardinality constraint are NP-hard mathematical programs and typically very hard to solve approximately. Our approach takes advantage of a recently developed and analyzed continuous formulation that relaxes the cardinality constraint. Based on that formulation, we solve a sequence of smooth convex constrained minimization problems, for which we use projected gradient-type methods. In our setting, the convex constraint region can be written as the intersection of a finite collection of convex sets that are easy and inexpensive to project. We apply our approach to a variety of over and under determined constrained linear least-squares problems, with both synthetic and real data that arise in variable selection, and demonstrate its effectiveness.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 284-296"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927423003148","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
To solve convex constrained minimization problems, that also include a cardinality constraint, we propose an augmented Lagrangian scheme combined with alternating projection ideas. Optimization problems that involve a cardinality constraint are NP-hard mathematical programs and typically very hard to solve approximately. Our approach takes advantage of a recently developed and analyzed continuous formulation that relaxes the cardinality constraint. Based on that formulation, we solve a sequence of smooth convex constrained minimization problems, for which we use projected gradient-type methods. In our setting, the convex constraint region can be written as the intersection of a finite collection of convex sets that are easy and inexpensive to project. We apply our approach to a variety of over and under determined constrained linear least-squares problems, with both synthetic and real data that arise in variable selection, and demonstrate its effectiveness.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.