An augmented Lagrangian approach for cardinality constrained minimization applied to variable selection problems

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
N. Krejić , E.H.M. Krulikovski , M. Raydan
{"title":"An augmented Lagrangian approach for cardinality constrained minimization applied to variable selection problems","authors":"N. Krejić ,&nbsp;E.H.M. Krulikovski ,&nbsp;M. Raydan","doi":"10.1016/j.apnum.2023.12.006","DOIUrl":null,"url":null,"abstract":"<div><div>To solve convex constrained minimization problems, that also include a cardinality constraint, we propose an augmented Lagrangian scheme combined with alternating projection ideas. Optimization problems that involve a cardinality constraint are NP-hard mathematical programs and typically very hard to solve approximately. Our approach takes advantage of a recently developed and analyzed continuous formulation that relaxes the cardinality constraint. Based on that formulation, we solve a sequence of smooth convex constrained minimization problems, for which we use projected gradient-type methods. In our setting, the convex constraint region can be written as the intersection of a finite collection of convex sets that are easy and inexpensive to project. We apply our approach to a variety of over and under determined constrained linear least-squares problems, with both synthetic and real data that arise in variable selection, and demonstrate its effectiveness.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 284-296"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927423003148","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

To solve convex constrained minimization problems, that also include a cardinality constraint, we propose an augmented Lagrangian scheme combined with alternating projection ideas. Optimization problems that involve a cardinality constraint are NP-hard mathematical programs and typically very hard to solve approximately. Our approach takes advantage of a recently developed and analyzed continuous formulation that relaxes the cardinality constraint. Based on that formulation, we solve a sequence of smooth convex constrained minimization problems, for which we use projected gradient-type methods. In our setting, the convex constraint region can be written as the intersection of a finite collection of convex sets that are easy and inexpensive to project. We apply our approach to a variety of over and under determined constrained linear least-squares problems, with both synthetic and real data that arise in variable selection, and demonstrate its effectiveness.
应用于变量选择问题的心数受限最小化的增强拉格朗日方法
为了解决凸约束最小化问题(其中也包括万有引力约束),我们提出了一种结合交替投影思想的增强拉格朗日方案。涉及万有引力约束的优化问题是 NP 难数学程序,通常很难近似求解。我们的方法利用了最近开发和分析的连续公式,该公式放宽了万有引力约束。在此基础上,我们使用投影梯度法解决了一系列平滑的凸约束最小化问题。在我们的设置中,凸约束区域可以写成凸集的有限集合的交集,这些凸集易于投影且成本低廉。我们将我们的方法应用于各种过确定和欠确定的线性最小二乘约束问题,包括变量选择中出现的合成数据和真实数据,并证明了它的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信