Kaiyuan Li, Chongpeng Ye, Wei Peng, Yanyan Zou, Xi Deng, Linlin Yi, Xujuan Wu
{"title":"Effect of tracheid cell structure on gas permeability and porosity in conifer species","authors":"Kaiyuan Li, Chongpeng Ye, Wei Peng, Yanyan Zou, Xi Deng, Linlin Yi, Xujuan Wu","doi":"10.1007/s00226-024-01562-1","DOIUrl":"10.1007/s00226-024-01562-1","url":null,"abstract":"<div><p>This study utilized a self-developed gas permeability–porosity integrated analyzer to examine the gas permeability and porosity of pine, cypress, and Cunninghamia conifers across different wood orientations and parts. The findings reveal that the longitudinal permeabilities of conifers are higher than the radial and tangential permeabilities by factors of 14–100 and 275–600, respectively. A consistent exponential relationship exists between longitudinal permeability and porosity, irrespective of species. In the sapwood, the tracheid dimensions are 110.5–132.1% in radius and 103.6–116.2% in length compared to heartwood. A single tracheid exhibits higher longitudinal flow resistance than those in the radial and tangential directions. The primary longitudinal flow resistance stems from the lap surface of the upper and lower tracheids series connected with pits. In radial and tangential directions, the gas flow encounters a high density of pits from a series of connected tracheids. The number of series-connected tracheids in the longitudinal direction is only 1% of those in radial and tangential directions, whereas it reaches up to 600 times for parallel connections. This leads to considerably lower total flow resistance in the longitudinal direction compared to radial and tangential directions. The measured higher longitudinal gas permeability aligns well with the model calculations and the gas microseepage is predominantly related to tracheid structure, causing permeability variations.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 3","pages":"1181 - 1197"},"PeriodicalIF":3.1,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141195417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of natural aging on wood combustion heat release","authors":"Jingyu Zhao, Xinrong Jiang, Jiajia Song, Shiping Lu, Yueyan Xiao, Chi-Min Shu","doi":"10.1007/s00226-024-01565-y","DOIUrl":"10.1007/s00226-024-01565-y","url":null,"abstract":"<div><p>Wood is a primary building tool for ancient buildings and structures, but for those that survive to date, naturally aged wood may pose a noteworthy fire hazard. There are potential risks to health, safety, and substantial cultural loss if fire risks in such buildings are not mitigated. We obtained several samples of aged wood commonly used in ancient structures (elm, pine, and aspen), and compared the kinetic and thermal characteristics to fresh wood examples to determine potential methods of enhancing safety. Differential scanning calorimetry was used to establish the heat release characteristics of the fresh and aged samples, and the characteristics of the thermal reaction stages were characterized using the temperature range and heat release laws for each reaction stage. The heat release characteristics during combustion were investigated for different heating rates, and the influence of aging on temperature change and heat release rate characteristics during different exothermic stages was assessed. Finally, using heat flow data, the apparent activation energy (AAE) of the samples and their distributions during different exothermic stages were calculated and analyzed via the Friedman differential iso-conversion method. Results showed that the exothermic energy of the aged samples was higher than that of the fresh samples, indicating that aging does impact the thermal reaction process. The aged samples in this study had a greater heat diffusion capacity, transmitted more heat, were more susceptible to burning (by spreading that heat), and generally posed a greater fire hazard. During the rapid exothermic phase, the AAE of aged wood increased as the reaction progressed, and exhibited lower AAE with a greater sensitivity to fire than fresh samples. A sound linear relationship between pre-exponential factor and AAE and the kinetic compensation effect was obvious. This study provided a rudimentary theoretical basis for the prevention of fires in timber-framed ancient buildings.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 3","pages":"1227 - 1257"},"PeriodicalIF":3.1,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141198278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magdalena Broda, Carmen-Mihaela Popescu, Kamil Poszwa, Edward Roszyk
{"title":"How thermal treatment affects the chemical composition and the physical, mechanical and swelling properties of Scots pine juvenile and mature wood","authors":"Magdalena Broda, Carmen-Mihaela Popescu, Kamil Poszwa, Edward Roszyk","doi":"10.1007/s00226-024-01561-2","DOIUrl":"10.1007/s00226-024-01561-2","url":null,"abstract":"<div><p>High variations in juvenile wood properties in the radial direction and its worse performance than mature wood make it less suitable for some applications and often treated as waste material. This study aimed to assess how thermal modification affects the chemical composition and the physical, mechanical and swelling properties of Scots pine juvenile and mature wood. An additional goal was to evaluate if the modification can equalise the differences in selected properties of juvenile wood to those of mature wood so that from waste material, juvenile wood can become a fully-fledged raw material for various industrial applications. Thermal treatment at 220 °C influenced wood chemical composition, degrading mainly hemicelluloses but also affecting cellulose and lignin, which resulted in a reduction of hydroxyls and carbonyl/carboxyl groups. These changes were more pronounced for mature than juvenile wood. It reduced mass loss and swelling rate, and increased swelling pressure in the tangential and radial directions to a higher degree for juvenile than mature wood. Changes in mechanical properties in compression were statistically significant only for mature wood, while wood hardness remained unaffected. Although the applied heat treatment improved the performance of juvenile wood by reducing its swelling rate, it did not equalise the examined properties between juvenile and mature wood. Since higher juvenile wood proportion is expected in the wood supply from the future intensively managed forests, there is still a need to find suitable modification methods or better processing techniques so that instead of being thrown away as waste, it could be used broadly in various industrial applications.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 3","pages":"1153 - 1180"},"PeriodicalIF":3.1,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01561-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141152778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermogravimetric investigation of anisotropy of dimensional shrinkage of softwood and hardwood during carbonization","authors":"Yu Wang, Takashi Nomura, Ramadan Eljamal, Eiji Minami, Haruo Kawamoto","doi":"10.1007/s00226-024-01560-3","DOIUrl":"10.1007/s00226-024-01560-3","url":null,"abstract":"<div><p>Thermogravimetric analysis (TGA) was performed on five softwood and five hardwood thin wood samples in the longitudinal (L) and radial (R) directions. Dimensional changes were monitored using a charge-coupled device camera under a nitrogen flow. A comparison of the TG and derivative TG (DTG) curves revealed that shrinkage in the R direction began when the weight was reduced to 79–92% at 305–330 °C and 87–96% at 275–290 °C for softwoods and hardwoods, respectively. Hemicellulose is mainly degraded in this temperature range. In contrast, shrinkage in the L direction started at temperatures close to the DTG peaks, i.e., 360–380 °C and 345–370 °C, respectively, at which temperatures cellulose is mainly degraded. In general, the R/L shrinkage anisotropy was greater for hardwoods than for softwoods, but the species variation was large and the magnitude was directly related to the difference in the shrinkage onset temperatures between the R and L directions, regardless of the wood species. Therefore, shrinkage anisotropy can be attributed to the relative reactivity of hemicellulose and cellulose in wood cell walls. The shrinkage mechanism during carbonization is discussed in terms of the cell wall ultrastructure, in which cellulose microfibrils are covered by a hemicellulose–lignin matrix, and the orientation of the cells in the L and R directions.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 3","pages":"959 - 974"},"PeriodicalIF":3.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01560-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140964503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The significance of structural components of lignocellulosic biomass on volatile organic compounds presence on biochar - a review","authors":"Ewa Syguła, Daniel Ciolkosz, Andrzej Białowiec","doi":"10.1007/s00226-024-01557-y","DOIUrl":"10.1007/s00226-024-01557-y","url":null,"abstract":"<div><p>The product of thermochemical processing of lignocellulosic biomass is biochar. It has a range of properties that make it suitable for a variety of economic applications. However, during pyrolysis and torrefaction, volatile organic compounds (VOCs) are released and may redeposit on the surface of the biochar. Some of these compounds may be harmful to the environment and humans. Bibliometric study shows that, to date, studies on the release of VOCs from biochar have been of an inventory nature and concerned with specific case studies of the specific types of biomass. To date, there has been no comprehensive and systematic analysis of the influence of lignocellulosic biomass properties and pyrolysis/torrefaction process parameters on VOC formation and redeposition on biochar. In this paper, the analysis is presented of the potential harmfulness of VOCs released during the thermochemical processing of lignocellulosic biomass components, based on cellulose, hemicellulose, and lignin pyrolysis/torrefaction chemistry data. 10 volatile organic compounds from cellulose, hemicellulose, and lignin pyrolysis were identified as potentially harmful due to the following properties: carcinogenicity, toxicity, flammability, skin corrosion/irritation, eye irritation, and mutagenicity, with different degrees of harmfulness. Additionally, the VOCs identified on biochar samples show a potential hazard. Among 140 identified compounds, 33 of them had harmful properties. Therefore, the redeposition on biochar of ketones, aldehydes, cyclic and aromatic hydrocarbons including polyaromatic hydrocarbons, and their derivatives, esters, and furans may lead to environmental contamination due to their release from biochar. A new niche for systematic research on the development of new knowledge regarding the biochars produced from biomass as a source of pollutant emission has been identified.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 3","pages":"859 - 886"},"PeriodicalIF":3.1,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01557-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140968732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cédric Dussaut, Julien Colin, Joel Casalinho, Rémi Teissier Du Cros, François Litoux-Desrues, Charlotte Abadie, Patrick Perré
{"title":"Swelling of oak wood in alcoholic solutions: synergy and memory effects between water and ethanol","authors":"Cédric Dussaut, Julien Colin, Joel Casalinho, Rémi Teissier Du Cros, François Litoux-Desrues, Charlotte Abadie, Patrick Perré","doi":"10.1007/s00226-024-01556-z","DOIUrl":"10.1007/s00226-024-01556-z","url":null,"abstract":"<div><p>This work is devoted to dimensional changes in oak wood induced by the adsorption of water and ethanol molecules during barrel aging of wine and spirits. A custom device has been developed to determine the deformations in the radial and tangential directions of samples soaked in liquid, through imagery and digital image correlation. Swelling measurements and residual shrinkage after subsequent drying are reported at eight ethanol contents, including pure water and ethanol. A synergistic effect is observed over a wide range of concentrations. This suggests a collaborative action of sorption sites when both water and ethanol are in sufficient quantity. In addition, sequential exposure tests were performed to assess the effect of history, showing that the order of exposure influences the swelling because of the irreversible alterations in the structure of the wood. All these data, including the residual shrinkage, were analyzed and the mechanisms are summarized in a graphical presentation.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 3","pages":"975 - 991"},"PeriodicalIF":3.1,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140976622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Peignon, J. Serra, A. Cantarel, F. Eyma, B. Castanié
{"title":"Toward the modelling of laminated veneer lumber stiffness and the influence of the number of plies","authors":"A. Peignon, J. Serra, A. Cantarel, F. Eyma, B. Castanié","doi":"10.1007/s00226-024-01558-x","DOIUrl":"10.1007/s00226-024-01558-x","url":null,"abstract":"<div><p>This research paper studies the influence that the number of plies has on the identification of the mechanical properties of poplar Laminated Veneer Lumber (LVL) from tensile tests such as its stiffness. LVL poplar specimens were prepared with different ply configurations and subjected to uniaxial tensile tests. Both longitudinal and transverse stiffnesses were characterized in this research. The results show that the ply configuration influences the mechanical properties. The influence of the glued faces, the presence of lathe checks, and the compression ratio of veneers were studied during the manufacturing of the LVL. All these results provide valuable information for the design and optimization of laminated wood structures. An analytical modelling strategy is proposed to account for the effect of ply numbers, ply orientations, the compression ratio of veneers and the glue used on the stiffness of poplar laminate both in longitudinal and transverse directions.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 3","pages":"1111 - 1139"},"PeriodicalIF":3.1,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140973586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuqi Dong, Zhehui Zhang, Hui Zhang, Xia Du, Zhuohua Sun, Yan Shang, Tingyu Yao
{"title":"Theoretical study on the reaction mechanism of Dakin oxidation: influence of methoxy groups","authors":"Shuqi Dong, Zhehui Zhang, Hui Zhang, Xia Du, Zhuohua Sun, Yan Shang, Tingyu Yao","doi":"10.1007/s00226-024-01555-0","DOIUrl":"10.1007/s00226-024-01555-0","url":null,"abstract":"<div><p>The reaction mechanism of the Dakin reaction for three lignin model compounds was thoroughly investigated using density functional theory (DFT). A more comprehensive atomic and molecular level oxidation mechanism for the Dakin reaction was proposed, complementing the previously reported reaction process. The potential energy surface information for twelve possible channels was obtained at B3LYP/6–311 + G(<i>d,p</i>) level based on the geometry optimization together with the frequency calculation of the stationary points. The influence of substituent effects on the reaction energy barrier of Dakin reaction in lignin model compounds was estimated. The calculated results revealed that the rearrangement reaction of quinone structure primarily involves ring-forming and ring-opening of epoxy group, the ring-forming on O and C of benzene ring and ring-opening on C and C of benzene ring. The energy barriers of Dakin reaction decrease with an increase in the number of methoxy groups in lignin model compounds. Further elucidation of the Dakin reaction mechanism will provide a theoretical foundation for the development of more effective catalytic systems to enhance the valuable utilization of lignin in future applications.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 3","pages":"1141 - 1152"},"PeriodicalIF":3.1,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The relationship between branch scar attributes and knot features in birch (Betula pendula and B. pubescens)","authors":"Christian Kuehne, Katrin Zimmer, Aaron Smith","doi":"10.1007/s00226-024-01554-1","DOIUrl":"10.1007/s00226-024-01554-1","url":null,"abstract":"<div><p>There is currently no quality sorting of harvested hardwood timber in Norway on a national scale. Medium- and high-quality logs including those from birch (<i>Betula pubescens</i> Ehrh., <i>B. pendula</i> Roth) are thus not utilized according to their potential monetary value. Increased domestic utilization of quality birch timber requires that the quality of harvested logs be properly assessed for potential end uses. A preferred sorting procedure would use visually detectable external log defects to grade roundwood timber. Knots are an important feature of inner log quality. Thus, the aim of this study was to evaluate whether correlations between branch scar size and knot features could be found in Norwegian birch. Using 168 knots from seven unpruned birch trees, external bark attributes often showed strong correlations with internal wood quality. Both length of the mustache and length of the seal performed well as predictors of stem radius at the time of knot occlusion. The presence of a broken off branch stub as part of an occluded knot significantly increased the knot-effected stem radius, proving that the practice of removing branches and branch stubs along the lower trunk is a crucial measure if quality timber production is the primary management goal.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 3","pages":"907 - 921"},"PeriodicalIF":3.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01554-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abasali Masoumi, Jason Grabosky, Frank W. Telewski
{"title":"Protein content and antioxidant enzymes activity in reaction wood of poplar and their response to different levels of sustained bending stress","authors":"Abasali Masoumi, Jason Grabosky, Frank W. Telewski","doi":"10.1007/s00226-024-01553-2","DOIUrl":"10.1007/s00226-024-01553-2","url":null,"abstract":"<div><p>The histogenesis of reaction wood in woody plants is a promising area of exploration for emerging wood technology products and for a generalized understanding of stress physiology. The activity of total protein and antioxidant enzymes were measured during the development of normal and reaction wood (opposite wood and tension wood) in the bole of poplar trees (<i>Populous alba</i> L.) induced by two levels of sustained bending stress to produce moderate and severe reaction wood. Four-year-old poplars were induced to produce reaction wood by sustained bending to 0, 35 and 80° from the vertical position. The activity of antioxidant enzymes was studied with repeated sampling during one growing season. Severe reaction wood showed higher levels of H<sub>2</sub>O<sub>2</sub> and enzymes than moderate reaction wood. Tension wood showed a higher accumulation of total protein than opposite wood at the beginning and end of the bending treatment and opposite wood showed higher enzymatic activity. H<sub>2</sub>O<sub>2</sub> and antioxidant enzymes were also sensitive to mechanical bending stress; compared to normal wood, tension wood and opposite wood which showed higher enzymatic activity coupled with higher amounts of total H<sub>2</sub>O<sub>2</sub>. Ascorbate peroxidase was more active than glutathione peroxidase in both tension and opposite wood at some periods of sampling.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 3","pages":"1077 - 1093"},"PeriodicalIF":3.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140881375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}