Mineralization of heat-treated fir wood with magnesium oxychloride: study of physical and structural properties

IF 3.1 2区 农林科学 Q1 FORESTRY
Mohammad Saleh Zare, Behbood Mohebby, Ali Shalbafan
{"title":"Mineralization of heat-treated fir wood with magnesium oxychloride: study of physical and structural properties","authors":"Mohammad Saleh Zare,&nbsp;Behbood Mohebby,&nbsp;Ali Shalbafan","doi":"10.1007/s00226-024-01609-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to investigate the effects of mineral impregnation on fir wood using magnesium-based compounds. Two methods, combination and separate treatment, were used to impregnate heat-treated and non-treated samples. The Bethel method, involving vacuum and pressure, was employed for the impregnation process. The impregnated samples underwent assessments for weight gain, volumetric bulking, water soaking tests, water droplet contact angle, mechanical properties, and fire resistance. Additionally, SEM and EDAX analyses were conducted to evaluate the changes in the wood structure pre- and post-impregnation. The findings revealed the filling of pores and cavities in certain areas with Sorel cement, particle accumulation in cell walls and cell lumina, and an increase in the presence of Mg, Cl, and O elements in the impregnated samples. Furthermore, the physical property analyses indicated improved wood properties post-impregnation, with the combination impregnation method demonstrating the most notable performance in terms of weight gain percentage. Electron microscopy confirmed the formation of the magnesium oxychloride cement structure within the cell voids of both types of wood. The mineralization of the wood structure with magnesium compounds resulted in increased dimensional stability, reduced water absorption, and enhanced bulking and density of the wood. Moreover, the contact angle of water droplets on the wood’s surface decreased following impregnation with magnesium compounds, while the surface roughness of the wood increased. Mineral impregnation significantly enhances the bending strength, modulus of elasticity, impact resistance, and fire resistance of wood, regardless of heat treatment. The combined impregnation method consistently outperforms the other method.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01609-3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to investigate the effects of mineral impregnation on fir wood using magnesium-based compounds. Two methods, combination and separate treatment, were used to impregnate heat-treated and non-treated samples. The Bethel method, involving vacuum and pressure, was employed for the impregnation process. The impregnated samples underwent assessments for weight gain, volumetric bulking, water soaking tests, water droplet contact angle, mechanical properties, and fire resistance. Additionally, SEM and EDAX analyses were conducted to evaluate the changes in the wood structure pre- and post-impregnation. The findings revealed the filling of pores and cavities in certain areas with Sorel cement, particle accumulation in cell walls and cell lumina, and an increase in the presence of Mg, Cl, and O elements in the impregnated samples. Furthermore, the physical property analyses indicated improved wood properties post-impregnation, with the combination impregnation method demonstrating the most notable performance in terms of weight gain percentage. Electron microscopy confirmed the formation of the magnesium oxychloride cement structure within the cell voids of both types of wood. The mineralization of the wood structure with magnesium compounds resulted in increased dimensional stability, reduced water absorption, and enhanced bulking and density of the wood. Moreover, the contact angle of water droplets on the wood’s surface decreased following impregnation with magnesium compounds, while the surface roughness of the wood increased. Mineral impregnation significantly enhances the bending strength, modulus of elasticity, impact resistance, and fire resistance of wood, regardless of heat treatment. The combined impregnation method consistently outperforms the other method.

用氯化氧镁矿化热处理杉木:物理和结构性质的研究
本研究旨在探讨镁基化合物对杉木的浸渍作用。采用联合浸渍和分离浸渍两种方法浸渍热处理和未处理的样品。浸渍过程采用了真空和加压的伯特利方法。对浸渍后的样品进行了重量增加、体积膨胀、水浸泡测试、水滴接触角、机械性能和耐火性的评估。此外,还进行了SEM和EDAX分析,以评估木结构在浸渍前后的变化。结果表明,Sorel水泥填充了某些区域的孔隙和空腔,细胞壁和细胞腔中积聚了颗粒,浸渍样品中Mg, Cl和O元素的存在增加。此外,物理性能分析表明,浸渍后木材性能得到改善,其中组合浸渍法在增重率方面表现出最显著的性能。电子显微镜证实了在两种木材的细胞空隙中形成的氯氧镁水泥结构。镁化合物对木结构的矿化提高了木材的尺寸稳定性,降低了木材的吸水率,增强了木材的体积和密度。镁化合物浸渍后,木材表面水滴接触角减小,木材表面粗糙度增大。矿物浸渍显著提高木材的抗弯强度、弹性模量、抗冲击性和耐火性,而不考虑热处理。复合浸渍法始终优于其他浸渍法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wood Science and Technology
Wood Science and Technology 工程技术-材料科学:纸与木材
CiteScore
5.90
自引率
5.90%
发文量
75
审稿时长
3 months
期刊介绍: Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信