{"title":"Robotic welding system for adaptive process control in gas metal arc welding","authors":"A. Biber, R. Sharma, U. Reisgen","doi":"10.1007/s40194-024-01756-y","DOIUrl":"10.1007/s40194-024-01756-y","url":null,"abstract":"<div><p>Changing process conditions such as distortion, varying seam preparation or gap width during welding is a major challenge in automated gas metal arc welding (GMAW). While human welders can adjust the process during welding (e.g. welding speed, torch orientation), an automated welding system needs sensors to detect and actuators to adjust the process. Adjusting the process in response to changing process conditions is usually referred to as adaptive welding. The aim of this work is to build a robotic welding system capable of automatically adapting the welding process using some of the approaches of a human welder. To enable adaptive process control, a robotic welding system is built. It consists of four main components: a six-axis industrial robot for mechanical guidance of the welding torch, a welding power source, a monochrome visual camera as an image sensor and a process controller that combines the three components. The camera captures images of the weld pool during welding and processes the images to provide geometrical information such as the width of the weld pool and the position of the weld pool front. Changes in the weld pool geometry are quantified, and an adjustment strategy is generated in the process control unit in real time. Process adjustments can be mechanical (e.g. welding speed, torch orientation) and electrical by adjusting synergic process settings (wire feed speed, arc length, process dynamics). Validation tests demonstrate the functionality of the welding system. Two use cases were investigated. Firstly, a deposited weld bead was examined, and variations in the width of the weld pool were induced by varying the welding speed. The second application was a seam tracking application. The path is pre-programmed, and the specimen is positioned with an offset to the path. Compensation for the offset is implemented.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01756-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140375671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gaurav Dak, Krishna Guguloth, R. S. Vidyarthy, Dariusz Fydrych, Chandan Pandey
{"title":"Creep rupture study of dissimilar welded joints of P92 and 304L steels","authors":"Gaurav Dak, Krishna Guguloth, R. S. Vidyarthy, Dariusz Fydrych, Chandan Pandey","doi":"10.1007/s40194-024-01757-x","DOIUrl":"10.1007/s40194-024-01757-x","url":null,"abstract":"<div><p>The present work investigates the high-temperature tensile and creep properties of the dissimilar metal weld joints of 304L austenitic stainless steel (SS) and P92 creep strength-enhanced ferritic-martensitic (CSEF/M) steel under different testing condition. Thermanit MTS 616 filler rod (P92 filler) and the multi-pass tungsten inert gas (TIG) welding process were used to create the dissimilar weld connection. The ultimate tensile strength (UTS) was evaluated in the temperature range of 450–850 °C. Creep testing was conducted at a temperature of 650 °C while applying stress levels of 130 MPa, 150 MPa, 180 MPa, and 200 MPa. The shortest creep life (2.53 h) was recorded for the specimen tested at 650 °C and subjected to 200 MPa, whereas the longest creep life (~ 242 h) was observed for the specimen tested at 650 °C with a stress of 130 MPa. The linear regression model was developed using an applied stress (σ) v/s rupture time (t<sub>R</sub>) plot at 650 °C. The applied stress and rupture time followed the logarithmic equation: log(t<sub>R</sub>) = 22.57566 + (-9.55294) log (σ). The detailed microstructural characterization and micro-hardness distribution across the fractured specimens was carried out. The findings demonstrated that the service life span of this weld joint at high temperature and stress conditions is influenced by the undesired microstructural changes at elevated temperature, such as coarsening of the precipitates, development of the Laves phase, softening of the matrix, and strain-ageing phenomenon.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140210519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of classified pore contents on the dynamic strength of the welded joint in gas metal arc welding with different process variants made of galvanized and uncoated complex-phase (CP) steel","authors":"M. Sarpe, V. Wesling, K. Treutler","doi":"10.1007/s40194-024-01755-z","DOIUrl":"10.1007/s40194-024-01755-z","url":null,"abstract":"<div><p>Increasing requirements in terms of weight, safety, and economy are leading to the use of high-strength steels in automotive construction. The focus is on advanced high-strength steels (AHSS). In chassis applications, complex-phase (CP) steels are frequently used and usually processed uncoated. But the demand for galvanized sheet steel is rising steadily to meet the increasing corrosion protection requirements of automotive manufacturers. Gas metal arc welding (GMAW) is an established joining technology. A typical joint geometry for welded chassis structures is the lap joint. The zinc coating poses a particular challenge in the welding process, especially for this geometry. As a result of its low boiling point, the zinc coating evaporates during welding and can lead to pores in the weld seam. Dynamic (crash) loads play a special role in the design of safety-relevant components in automotive engineering. The dynamic strength of tensile shear specimens made of hot-dip zinc-coated CP steel with a sheet thickness of <i>t</i> = 2.5 mm is presented in this paper, considering the influencing variables of heat input, specimen geometry, and pore content. The results of high-speed tensile tests with a servo-hydraulic high-speed testing machine for the test velocities 0.00017 m/s, 0.05 m/s, 0.5 m/s, and 5 m/s according to SEP 1231 are presented. In addition, the failure behavior of the shear tensile specimens welded as fillet welds by GMAW is analyzed by digital image correlation (DIC), and the resulting fracture mechanisms are investigated and presented by scanning electron microscope (SEM).</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140211041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian Mathiszik, Johannes Koal, Jörg Zschetzsche, Uwe Füssel, Hans Christian Schmale
{"title":"Study on precise weld diameter validations by comparing destructive testing methods in resistance spot welding","authors":"Christian Mathiszik, Johannes Koal, Jörg Zschetzsche, Uwe Füssel, Hans Christian Schmale","doi":"10.1007/s40194-024-01747-z","DOIUrl":"10.1007/s40194-024-01747-z","url":null,"abstract":"<div><p>The torsion test is rarely used for resistance spot-welded joints since they are not subjected to torsion in applications. Normal, shear, and/or peel loads are usually the main stresses. Extensive scientific investigations in the context of Kunsmann’s dissertation date back more than 50 years. These investigations are still the basis of ISO 17653 and the German guideline DVS 2916-1. Recent scientific investigations only use torsion tests, but do not describe the reason for its use. A decisive advantage of the torsion test over the other standardized destructive testing methods lies in the types of fracture modes that occur and the properties of the fracture surfaces. Torsional loading results in either interfacial or button-pulled fracture modes. No material residues occur on the fracture surfaces for ductile and advanced high-strength steels. Hence, the measurement of weld diameter is achievable with minimal constraints, resulting in reduced variability and facilitating objective assessments of spot welds. This article delineates these attributes through a comparative analysis of various destructive testing methods employing statistical approaches. Additionally, the article expounds on the design concept of the developed rig for conducting torsion tests on spot welds.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01747-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lukas Wojarski, Henrik Ulitzka, Anna Geldmacher, Tim Ulitzka, Wolfgang Tillmann
{"title":"In situ observation of the pore formation during laser-based reactive air brazing of alumina","authors":"Lukas Wojarski, Henrik Ulitzka, Anna Geldmacher, Tim Ulitzka, Wolfgang Tillmann","doi":"10.1007/s40194-024-01733-5","DOIUrl":"10.1007/s40194-024-01733-5","url":null,"abstract":"<div><p>Reactive air brazing (RAB) is a low-cost process for joining ceramic composites in air. However, due to the comparably low strength values that can be achieved by RAB, the process is only used in special applications like solid oxide fuel cells as a sealant. The limited strength values are the result of a severe pore formation during the brazing operation that remain in the brazing fillet after the solidification of the brazing filler. In this work, the formation of the pores during RAB brazing of alumina using a paste containing Ag4CuO powder and various binders was investigated. The formation and evolution of the pores were observed and quantified in in situ X-ray measurements. It could be observed that during debinding, pores have developed in the filler metal. The pore structure depends on the binder and the heating rate in the debinding stage. With the melting of the filler metal, many pores are closed by the melt flow. But it seems that the wetting of the alumina was hindered by the pores. The change of porosity during cooling is comparatively low.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01733-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140148790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Search for high-creep-strength welding conditions considering HAZ shape factors for 2 1/4Cr–1Mo steel","authors":"Hitoshi Izuno, Masahiko Demura, Masayoshi Yamazaki, Satoshi Minamoto, Junya Sakurai, Kenji Nagata, Yoh-ichi Mototake, Daisuke Abe, Keisuke Torigata","doi":"10.1007/s40194-024-01727-3","DOIUrl":"10.1007/s40194-024-01727-3","url":null,"abstract":"<div><p>The creep rupture life of ferritic heat-resistant steel weld joints is limited by Type IV cracking that occurs in the heat-affected zone (HAZ), whose shape affects creep damage accumulation. In this study, we address the inverse problem of extending the creep rupture life of weld joints by controlling HAZ shape via welding conditions. As reported separately, we have developed a workflow that predicts weld joint creep rupture life from the predicted HAZ shape from welding conditions and have implemented it in the material design system. Using this workflow, we presented a tandem Bayesian model for predicting the creep rupture life from welding conditions via the geometric features of HAZ shapes (HAZ shape factors), which are considered to determine the creep rupture life. The prediction model of a HAZ shape factor from welding conditions was formed by Gaussian process regression. The prediction model of the creep rupture life was formed by Bayesian linear regression. These models were probabilistically connected by Bayesian statistical mathematics. An algorithm to increase the creep rupture life was developed to search for welding conditions. This method was applied to a 2 1/4Cr–1Mo heat-resistant steel weld joint simulated with a plate I-bevel three-layer gas tungsten arc welding. The number of welding conditions combination reaches <span>({7}^{8}=5764801)</span>. Start from 49 initial HAZ shape factors and 22 creep rupture life data, we performed forward calculations of 20 rupture lives to find welding conditions that can improve the creep rupture life by 12% over the initial data.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140148868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Josef Neuhäusler, Jakob Roth, Markus Oswald, André Dürr, Klemens Rother
{"title":"Sequence effects on the life estimation of welded tubular structures made of S355J2H under uniaxial fatigue loading","authors":"Josef Neuhäusler, Jakob Roth, Markus Oswald, André Dürr, Klemens Rother","doi":"10.1007/s40194-023-01605-4","DOIUrl":"10.1007/s40194-023-01605-4","url":null,"abstract":"<div><p>The use of hollow sections to form lightweight structures is widespread in common steel processing industries such as crane, commercial vehicle, steel bridge and agricultural machinery construction. The hollow sections are mainly designed as truss or frame structures, in some cases using high-strength and higher-strength steels in order to achieve optimum utilization of the component and material. A new collection of fatigue life data covering sequence effects and the accuracy of the linear damage accumulation is presented. Effects of the shape of the applied load spectra and sequence effects of different amplitudes have been investigated. This document covers tubes of 4 to 8 mm thickness made by low-carbon or mild steel S355J2H. In general, it was found that the spectrum shape and the loading sequence have an influence on the service life. Depending on the shape of the spectrum, random tests tended to lead to shorter service lives than tests with block-loading sequences. An influence of overloads was also found for the tests with interspersed overloads. Typical maximum linear damage sums taken from recommendations and codes of 0.2 or sometimes 0.5 are exceeded for all spectra investigated and in some of the cases even significantly above 1.0. Transferability of the recommendations to component-type structures like tubular joints needs revision to lift its lightweight potential. Using stress concentration factors (SCF) from finite element analysis, typical strength values for the structural and effective notch stress concepts are checked. All joints investigated show a significantly higher strength compared to the IIW recommendations using the structural stress approach or compared to the DVS 0905 with the effective notch stress approach.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-023-01605-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140148789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Joint design influence on hybrid laser arc welding of maraging steel","authors":"L. Subashini, K. V. Phani Prabhakar, Swati Ghosh","doi":"10.1007/s40194-024-01751-3","DOIUrl":"10.1007/s40194-024-01751-3","url":null,"abstract":"<div><p>Hybrid laser arc welding (HLAW) was performed in a single-pass on M250 maraging steel plates of 10-mm thickness with three modified joint designs. A Y-groove joint preparation with included angles (IA) of 16°, 24°, and 30° and root face of 2.5 mm was used. Welding was performed using M250 W2 filler wire. The heat input for welding increased as the IA increased. The composition of weld fusion zone affected the reverted austenite (RA) volume fraction formed on aging. With an increase in base metal melting, the fusion zone was enriched with solute elements such as Ni, Mo, and Ti, ultimately increasing RA after aging. The fusion zone hardness of joints 1 and 2 was in the range 500–550 HV. The fusion zone of joint 3 exhibited a lower hardness of 475–525 HV due to the increased heat input involved in making the joint. When the transverse tensile strength of all welds was comparable to that of the parent metal, a significant reduction in <i>K</i><sub>Ic</sub> fracture toughness of fusion zone (FZ) was observed as the RA increased. <i>K</i><sub>Ic</sub> fracture toughness values were in the order, base > joint 1 > joint 2 > joint 3. The space between neighboring RA pools was smaller in the laser fusion zone (LFZ) owing to its fine cell size compared to the arc fusion zone (AFZ), and the welds failed by connecting series of cavities that only arise in the RA. LFZ appears to play an important role in determining weld toughness of HLAW welds.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140148792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Visualization and control of the free-flight transfer phenomenon in the wire feed control process","authors":"Toshiki Maruyama, Yosuke Ogino, Tomokazu Sano","doi":"10.1007/s40194-024-01748-y","DOIUrl":"10.1007/s40194-024-01748-y","url":null,"abstract":"<div><p>Gas metal arc (GMA) welding requires improved process stability, higher quality and efficiency, and quantitative control of the heat input and deposition. These requirements can be achieved by appropriately controlling the metal transfer phenomenon. However, this control method has primarily been applied to short-circuit transfer, and very few examples of its application to free-flight transfer exist. Therefore, the effect of wire feed control on free-flight transfer remains unclear. In this study, the influence of wire feed control on the free-flight transfer phenomenon in the GMA welding process using an aluminum wire electrode was investigated through experimental observations, and free-flight transfer control was attempted.</p><p>It was observed the free-flight transfer phenomenon, particularly globular transfer, under low-current conditions with controlled wire feeding under various feed conditions, using wire feed–retract speeds and cycles as parameters. The observation results revealed two patterns with different timings of droplet detachment under long- and short-period conditions. Furthermore, the observation of the droplet detachment motions revealed that the inertia caused by the acceleration or deceleration of the feed speed acts on the droplet. Moreover, the difference between the two transfer patterns is primarily caused by the inertia acting on the droplet before and after switching the wire feed–retract direction and the size of the droplet at that time. Based on this, free-flight transfer can be stabilized by reconfiguring the feed conditions.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01748-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140116641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shumpei Fujio, Yuji Sato, Mao Sudo, Keisuke Takenaka, Koji Tojo, Timotius Pasang, Masahiro Tsukamoto
{"title":"Spatter reduction in deep penetration welding of pure copper using blue-IR hybrid laser","authors":"Shumpei Fujio, Yuji Sato, Mao Sudo, Keisuke Takenaka, Koji Tojo, Timotius Pasang, Masahiro Tsukamoto","doi":"10.1007/s40194-024-01734-4","DOIUrl":"10.1007/s40194-024-01734-4","url":null,"abstract":"<div><p>Bead-on-plate welding of pure copper with a blue-IR hybrid laser was conducted to achieve a spatter suppression in deep penetration welding of pure copper for the performance improvement of battery and power device of e-mobility. This hybrid laser combines an infrared (IR) laser and a blue diode laser as the welding source and preheating source, respectively. Preheating increases the light absorptivity of pure copper in the IR region. A 1.5-kW blue diode laser was employed to increase the light absorptivity by changing the phase of the preheated area from solid phase to liquid and gas phase. By experimentally investigating the influence of the blue diode laser intensity, the phase effects of the preheated area on pure copper welding with a blue-IR hybrid laser are elucidated. As a result, it was found that a liquid preheated area minimizes spatter during deep penetration welding. </p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01734-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140116785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}