Effect of Ge and In on the structure and thermodynamic characteristics of high-entropy MnCoNiCu alloys

IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
S. V. Maksymova, P. V. Kovalchuk, V. V. Voronov, M. V. Karpets, M. P. Naumenko
{"title":"Effect of Ge and In on the structure and thermodynamic characteristics of high-entropy MnCoNiCu alloys","authors":"S. V. Maksymova,&nbsp;P. V. Kovalchuk,&nbsp;V. V. Voronov,&nbsp;M. V. Karpets,&nbsp;M. P. Naumenko","doi":"10.1007/s40194-024-01879-2","DOIUrl":null,"url":null,"abstract":"<div><p>The study explores the feasibility of developing multi-component high-entropy filler metals for brazing various alloys. By employing computational methods alongside modified Hume-Rothery criteria, a promising MnCoNiCu-(In, Ge) system was identified. Various thermodynamic parameters were computed, establishing the structural dependencies of experimental alloys on alloying component content. Alloying limits adhering to criteria for high-entropy alloys were determined. Calculations revealed that MnCoNiCuIn<sub>5</sub> and MnCoNiCuGe<sub>5</sub> alloys crystallize, forming mixed solid solutions. Experimental investigations determined the solidus and liquidus temperatures of the promising alloys. MnCoNiCuIn<sub>5</sub> showed a range of 974–1089 °C, while MnCoNiCuGe<sub>5</sub> exhibited a melting range of 953.3–1100.6 °C. X-ray structural analysis confirmed a two-phase dendritic structure for experimental alloys, with primary phases being Mn–Co–Ni–Cu solid solution dendrites doped with indium or germanium, respectively. The secondary phase of the MnCoNiCuIn<sub>5</sub> alloy displayed increased concentrations of copper (up to 32 at.%) and indium (up to 15.14 at.%), while that of the MnCoNiCuGe<sub>5</sub> alloy showcased increased concentrations of manganese and germanium (35.79 at.% and 15.50 at.%, respectively). Results from both calculated and experimental studies support the potential utilization of the selected high-entropy alloys MnCoNiCuIn<sub>5</sub> and MnCoNiCuGe<sub>5</sub> as brazing filler metals.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 6","pages":"1625 - 1633"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01879-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The study explores the feasibility of developing multi-component high-entropy filler metals for brazing various alloys. By employing computational methods alongside modified Hume-Rothery criteria, a promising MnCoNiCu-(In, Ge) system was identified. Various thermodynamic parameters were computed, establishing the structural dependencies of experimental alloys on alloying component content. Alloying limits adhering to criteria for high-entropy alloys were determined. Calculations revealed that MnCoNiCuIn5 and MnCoNiCuGe5 alloys crystallize, forming mixed solid solutions. Experimental investigations determined the solidus and liquidus temperatures of the promising alloys. MnCoNiCuIn5 showed a range of 974–1089 °C, while MnCoNiCuGe5 exhibited a melting range of 953.3–1100.6 °C. X-ray structural analysis confirmed a two-phase dendritic structure for experimental alloys, with primary phases being Mn–Co–Ni–Cu solid solution dendrites doped with indium or germanium, respectively. The secondary phase of the MnCoNiCuIn5 alloy displayed increased concentrations of copper (up to 32 at.%) and indium (up to 15.14 at.%), while that of the MnCoNiCuGe5 alloy showcased increased concentrations of manganese and germanium (35.79 at.% and 15.50 at.%, respectively). Results from both calculated and experimental studies support the potential utilization of the selected high-entropy alloys MnCoNiCuIn5 and MnCoNiCuGe5 as brazing filler metals.

Ge和In对高熵MnCoNiCu合金组织和热力学特性的影响
研究了开发多组分高熵钎料钎焊各种合金的可行性。通过采用改进的休谟-罗瑟里标准的计算方法,确定了一个有前途的MnCoNiCu-(In, Ge)体系。计算了各种热力学参数,建立了合金成分含量对合金结构的依赖关系。确定了符合高熵合金标准的合金极限。计算表明,MnCoNiCuIn5和MnCoNiCuGe5合金结晶,形成混合固溶体。实验研究确定了有前途的合金的固相温度和液相温度。MnCoNiCuIn5的熔化范围为974 ~ 1089℃,MnCoNiCuGe5的熔化范围为953.3 ~ 11006℃。x射线结构分析证实实验合金为两相枝晶结构,初生相分别为掺杂铟或锗的Mn-Co-Ni-Cu固溶体枝晶。MnCoNiCuGe5合金的第二相中,铜和铟的浓度分别增加了32 at.%和15.14 at.%,而MnCoNiCuGe5合金的第二相中,锰和锗的浓度增加了35.79 at.%。%和15.50美元。分别为%)。计算结果和实验结果均支持所选高熵合金MnCoNiCuIn5和MnCoNiCuGe5作为钎焊填充金属的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Welding in the World
Welding in the World METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
4.20
自引率
14.30%
发文量
181
审稿时长
6-12 weeks
期刊介绍: The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信