镍基超合金上沉积的 Stellite 6 硬面经长时间老化后的微观结构研究

IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Xiaozhou Zhang, Rong Liu, Xueyao Wu, Siqi Li, Xijia Wu, Fadila Khelfaoui
{"title":"镍基超合金上沉积的 Stellite 6 硬面经长时间老化后的微观结构研究","authors":"Xiaozhou Zhang,&nbsp;Rong Liu,&nbsp;Xueyao Wu,&nbsp;Siqi Li,&nbsp;Xijia Wu,&nbsp;Fadila Khelfaoui","doi":"10.1007/s40194-024-01886-3","DOIUrl":null,"url":null,"abstract":"<div><p>Stellite 6 hardfacing is deposited on Haynes 282 and Inconel 740H via plasma transferred arc (PTA) welding. The fabricated hardfacing specimens are subjected to different post-welding heat treatments, and then aged at 760, 815 and 871 °C for a time length ranging from 1000 to 30,000 h. The microstructures of the hardfacings before and after long-time aging are investigated with SEM/EDS/XRD. It is shown that the PTA welding process causes the hardfacing microstructure deviating from Stellite 6 alloy due to dilution. With participation of other elements from the substrate material, the compositions of both solid solution and carbide/intermetallic of the Stellite 6 hardfacing are modified. In the meanwhile, Ti–rich or Ti/Nb-rich new phases are generated. Long-time aging has an impact on the microstructures of the hardfacings, but at 760 °C, especially for an exposure time less than 20,000 h, the microstructures of the hardfacings do not show obvious change. However, when the hardfacing specimens are aged at 815 and 871 °C even for an exposure time of 1000 h only, Al-rich precipitates can occur, and the amount of the precipitates increase with aging time. These brittle precipitates generally have a detrimental effect on the performance of the hardfacings because they can deteriorate the ductility of the hardfacings. With the presence of Al-rich precipitates the hardness of the hardfacings decreases.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 1","pages":"55 - 80"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructural studies of Stellite 6 hardfacing deposited on nickel-based superalloys subjected to long-time aging\",\"authors\":\"Xiaozhou Zhang,&nbsp;Rong Liu,&nbsp;Xueyao Wu,&nbsp;Siqi Li,&nbsp;Xijia Wu,&nbsp;Fadila Khelfaoui\",\"doi\":\"10.1007/s40194-024-01886-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stellite 6 hardfacing is deposited on Haynes 282 and Inconel 740H via plasma transferred arc (PTA) welding. The fabricated hardfacing specimens are subjected to different post-welding heat treatments, and then aged at 760, 815 and 871 °C for a time length ranging from 1000 to 30,000 h. The microstructures of the hardfacings before and after long-time aging are investigated with SEM/EDS/XRD. It is shown that the PTA welding process causes the hardfacing microstructure deviating from Stellite 6 alloy due to dilution. With participation of other elements from the substrate material, the compositions of both solid solution and carbide/intermetallic of the Stellite 6 hardfacing are modified. In the meanwhile, Ti–rich or Ti/Nb-rich new phases are generated. Long-time aging has an impact on the microstructures of the hardfacings, but at 760 °C, especially for an exposure time less than 20,000 h, the microstructures of the hardfacings do not show obvious change. However, when the hardfacing specimens are aged at 815 and 871 °C even for an exposure time of 1000 h only, Al-rich precipitates can occur, and the amount of the precipitates increase with aging time. These brittle precipitates generally have a detrimental effect on the performance of the hardfacings because they can deteriorate the ductility of the hardfacings. With the presence of Al-rich precipitates the hardness of the hardfacings decreases.</p></div>\",\"PeriodicalId\":809,\"journal\":{\"name\":\"Welding in the World\",\"volume\":\"69 1\",\"pages\":\"55 - 80\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding in the World\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40194-024-01886-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01886-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

通过等离子转移电弧(PTA)焊接在Haynes 282和Inconel 740H上沉积钨铬钴合金6堆焊。对堆焊试样进行不同的焊后热处理,分别在760、815和871℃下时效1000 ~ 30000 h,采用SEM/EDS/XRD分析堆焊试样在长时间时效前后的组织。结果表明,PTA焊接工艺使堆焊组织因稀释而偏离Stellite 6合金。在基体材料中加入其他元素后,对Stellite 6堆焊的固溶体和碳化物/金属间化合物的组成进行了改性。同时生成富Ti或富Ti/ nb新相。长时间时效对堆焊层的组织有影响,但在760℃下,特别是暴露时间小于20,000 h时,堆焊层的组织没有明显变化。而当堆焊试样在815℃和871℃时效1000 h时,富al析出,且析出量随时效时间的延长而增加。这些脆性析出物通常对堆焊材料的性能有不利的影响,因为它们会使堆焊材料的延展性恶化。富铝析出物的存在使堆焊面的硬度降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructural studies of Stellite 6 hardfacing deposited on nickel-based superalloys subjected to long-time aging

Stellite 6 hardfacing is deposited on Haynes 282 and Inconel 740H via plasma transferred arc (PTA) welding. The fabricated hardfacing specimens are subjected to different post-welding heat treatments, and then aged at 760, 815 and 871 °C for a time length ranging from 1000 to 30,000 h. The microstructures of the hardfacings before and after long-time aging are investigated with SEM/EDS/XRD. It is shown that the PTA welding process causes the hardfacing microstructure deviating from Stellite 6 alloy due to dilution. With participation of other elements from the substrate material, the compositions of both solid solution and carbide/intermetallic of the Stellite 6 hardfacing are modified. In the meanwhile, Ti–rich or Ti/Nb-rich new phases are generated. Long-time aging has an impact on the microstructures of the hardfacings, but at 760 °C, especially for an exposure time less than 20,000 h, the microstructures of the hardfacings do not show obvious change. However, when the hardfacing specimens are aged at 815 and 871 °C even for an exposure time of 1000 h only, Al-rich precipitates can occur, and the amount of the precipitates increase with aging time. These brittle precipitates generally have a detrimental effect on the performance of the hardfacings because they can deteriorate the ductility of the hardfacings. With the presence of Al-rich precipitates the hardness of the hardfacings decreases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Welding in the World
Welding in the World METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
4.20
自引率
14.30%
发文量
181
审稿时长
6-12 weeks
期刊介绍: The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信