{"title":"Precision in medical isotope production: Nuclear model calculations using artificial neural networks","authors":"","doi":"10.1016/j.apradiso.2024.111478","DOIUrl":"10.1016/j.apradiso.2024.111478","url":null,"abstract":"<div><p>In this groundbreaking study, artificial neural networks (ANNs) are employed to predict the production cross-sections of crucial radioisotopes, namely <sup>18</sup>O, <sup>209</sup>Bi, <sup>232</sup>Th, and <sup>68</sup>Zn, via the (p,n) reaction. We employed a comparative approach to validate the ANN model's predictions by comparing them to outputs generated by established nuclear reaction codes (TALYS 1.9, EMPIRE-3.2 (Malta)) and data from the authoritative source, the Experimental Nuclear Reaction Data (EXFOR).Motivated by the increasing demand for radioisotopes in precise medical diagnostics and successful therapies, this study focuses on investigating methods and new techniques for determining production cross-sections with high accuracy, which are crucial for the consistent supply of vital radioisotopes. In line with this objective, the ANN model demonstrated exceptional performance, achieving remarkably high correlation coefficients, exceeding 0.999 for training and all data, and reaching 0.98665 for testing. Supportive of this, the high correlation coefficients indicate that the ANN estimations effectively match experimental data. Significantly, our findings illustrate the potential of ANNs as a promising alternative for estimating the production cross-sections of <sup>18</sup>O, <sup>209</sup>Bi, <sup>232</sup>Th, and <sup>68</sup>Zn, with the possibility of extending this application to other medically relevant radioisotopes.</p></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Giant dipole resonance parameters optimization and photo-neutron cross-section calculations of several spherical and deformed nuclei","authors":"","doi":"10.1016/j.apradiso.2024.111477","DOIUrl":"10.1016/j.apradiso.2024.111477","url":null,"abstract":"<div><p>Understanding the interaction between photons and matter is crucial for exploring essential questions in nuclear physics. The Giant Dipole Resonance (GDR) is the prevailing mechanism in photo-absorption cross-sections up to 30 MeV. Depending on whether the nucleus is spherical or deformed, the curve of the photo-absorption cross-section versus photon energy is characterized by one or several Lorentzian peaks. Theoretical calculations of photo-absorption cross-sections are largely centered on deducing GDR parameters. These parameters are used in theoretical reaction codes that aim to simulate photon-induced nuclear reactions accurately. In this study, the GDR parameters for the spherical isotopes <sup>115</sup>In, <sup>144</sup>Sm, <sup>148</sup>Sm, <sup>150</sup>Sm, and for the deformed isotopes <sup>154</sup>Sm, <sup>153</sup>Eu, and <sup>160</sup>Gd were calculated by optimizing to the experimental data. The calculated GDR parameters were inputted into the TALYS 1.8 code to compute the photo-neutron cross sections, which were then compared with experimental results from the literature. It has been observed that the calculations performed with the obtained GDR parameters are consistent with the experimental data.</p></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction of the prompt γ-ray neutron activation analysis system at CARR and the first pilot experiment on boron-containing high-temperature alloys","authors":"","doi":"10.1016/j.apradiso.2024.111476","DOIUrl":"10.1016/j.apradiso.2024.111476","url":null,"abstract":"<div><p>A prompt γ-ray neutron activation analysis system has recently been developed at China advanced research reactor (CARR), the 60 MW research reactor in China Institute of Atomic Energy (CIAE). The system is set at the cold neutron beam guide with a thermal equivalent neutron flux at the sample position of 1.0×10<sup>9</sup> n·cm<sup>-2</sup>·s<sup>-1</sup> with the power of 30 MW, and it is mainly composed of a neutron beam collimator, a sample chamber, a beam stopper, neutron and γ-ray shieldings and a detection system. The detection system can realize three modes of measurement: single, Compton suppression, and pair modes. The detection efficiency was calibrated up to 11 MeV using a set of radionuclides and the (n, γ) reactions of N and Cl. Boron, one of the most important elements in high-temperature alloy material studies, was analyzed in this work, as the first pilot experiment of the CARR-PGNAA system. The analytical sensitivity of 2000 cps/mg-B was obtained. The results verified the feasibility of the CARR-PGNAA system to measure boron in high-temperature alloys, and laid a foundation for the accurate quantification of boron in the next step.</p></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Radioactive sources search method based on multi-robot and Voronoi partition","authors":"","doi":"10.1016/j.apradiso.2024.111475","DOIUrl":"10.1016/j.apradiso.2024.111475","url":null,"abstract":"<div><p>In this paper, it is proposed to locate multiple unknown radioactive sources within a certain time limit through particle filtering and Voronoi partitioning. Firstly, with each robot as a Voronoi centroid, the entire area is partitioned. Then, the robots conduct source search concurrently through particle filtering. When all the robots complete the process of one-particle filtering, the iteration ends and the next one begins until the search for the radioactive source is terminated. Finally, experiment is conducted to demonstrate the efficiency and accuracy of the proposed method.</p></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Radionuclides transfer from soil-to-tea leaves and concomitant doses to the Malaysian populace","authors":"","doi":"10.1016/j.apradiso.2024.111474","DOIUrl":"10.1016/j.apradiso.2024.111474","url":null,"abstract":"<div><p>One of the most well-liked energizing drinks is now tea, which is primarily used in Malaysia. The natural radioactivity in the associated soils where tea plants are cultivated plays a major role in determining the presence of radionuclides in tea leaves. The present study assesses the transfer of radionuclides from soil-to-tea leaves and then estimates the committed effective doses through tea consumption. Tea leaves and the associated soils were obtained from the largest tea plantation area, which is located in the Cameron Highlands, Malaysia. The marketed tea leaves in powdered form were obtained from the supermarkets in Kuala Lumpur. HPGe gamma-ray spectrometry was used to determine the prevailing concentrations of long-lived radioactive materials in tea leaves. Activity concentrations of <sup>226</sup>Ra, <sup>232</sup>Th, and <sup>40</sup>K in tea soils ranged from 49 to 101.7 Bq kg<sup>−1</sup>, 74.5–124.1 Bq kg<sup>−1</sup> and 79.6–423.2 Bq kg<sup>−1</sup>, respectively, while the respective values in tea leaves are 14.4–23.8 Bq kg<sup>−1</sup>, 12.9–29.5 Bq kg<sup>−1</sup> and 297–387.5 Bq kg<sup>−1</sup>. Transfer factors of radionuclides showed typical values (<1.0) except for the <sup>40</sup>K. The threshold tea consumption rates suggest that one should not consume more than 67 g of tea leaves per day (around 4 g of tea leaves are needed for making 1 cup of tea, so 17 cups per day) to avoid negative health effects. Committed effective doses due to tea consumption are found to be lower (5.18–6.08 μSv y<sup>−1</sup>) than the United Nations Scientific Committee on the Effects of Atomic Radiation (2000) reference dose guidance limit of 290 μSv y<sup>−1</sup> for foodstuffs; however, it should be noted that the guidance limit is recommended for all foodstuffs collectively. Providing data on natural radioactivity in tea leaves grown in Malaysia, this study may help people manage a healthy lifestyle.</p></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scatter radiation levels in X-ray rooms during chest radiography","authors":"","doi":"10.1016/j.apradiso.2024.111472","DOIUrl":"10.1016/j.apradiso.2024.111472","url":null,"abstract":"<div><p>This research focused on the determination of scatter radiation levels in x-ray rooms during chest radiography. 108 patients were examined. Four x-ray machines (A, B, C, and D) were used during the research from three centers. Three positions were considered in this study; position Q just beside the (Bucky stand), position R, which is 150 cm from the left of the Bucky stand towards the door and position T, 200 cm from the Bucky stand to the radiographer's protective screen respectively. Two machines (A and B) from center 1 and one machine from center 2 (C) and one machine from center 3 (D). The body mass index (BMI) of the participants ranged from 20 to 25 kgm<sup>−2</sup> with mean value of 23.97 kgm<sup>−2</sup>. The background radiation level was read using Radalert 100 m before any exposure, and the mean background level was 0.298 mR/h. The mean of the scatter radiation doses obtained from positions Q with respect to the four machines A, B, C, and D, were 0.109, 0.201, 0.204, 0.200 mR/h (9.166, 16.903, 17.156, 16.819 mSv/yr) and their standard deviations were ±0.052, ±0.053, ±0.064, and ±0.081 respectively. The results were comparable with previous studies. The study recommends staff education and training in determination of radiation levels for enhanced work safety.</p></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis, characterization, and stability assessment of sodium and barium heptamolybdates","authors":"","doi":"10.1016/j.apradiso.2024.111473","DOIUrl":"10.1016/j.apradiso.2024.111473","url":null,"abstract":"<div><p>The study of complex phases in nuclear fuels is necessary to understand the physicochemical properties of the fuel. Na<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>⋅14H<sub>2</sub>O (<strong>1</strong>) was prepared <em>via</em> a simplified method and the crystal structure was improved. Upon thermal degradation, <strong>1</strong> decomposes into Na<sub>2</sub>Mo<sub>2</sub>O<sub>7</sub> and MoO<sub>3</sub>. Additionally, novel Ba<sub>3</sub>Mo<sub>7</sub>O<sub>24</sub>⋅12H<sub>2</sub>O (<strong>2</strong>) was isolated <em>via</em> an aqueous synthetic route and characterized <em>via</em> FTIR and elemental analysis. PXRD pattern of <strong>2</strong> was determined. Thermal degradation of <strong>2</strong> indicates formation of BaMoO<sub>4</sub>, BaMo<sub>3</sub>O<sub>10</sub>, MoO<sub>3</sub>, and an unidentified phase.</p></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Background radioactivity level estimation and passive shield optimization using adjoint Monte Carlo method","authors":"","doi":"10.1016/j.apradiso.2024.111471","DOIUrl":"10.1016/j.apradiso.2024.111471","url":null,"abstract":"<div><p>The current study proposes a procedure to estimate the activity concentration of natural radionuclides and to optimize passive shielding solutions for HPGe detectors using adjoint Monte Carlo (MC) simulation technique of Geant4 for the first time. The background spectrum is acquired for 1.56 × 10<sup>6</sup> s using an HPGe detector model (GC3020), set inside a shielding solution, during 2021–2022 to estimate the activity concentration of natural radionuclides inside the shielding. While, a background spectrum for 65,000 s is acquired with shielding removed to estimate the concentration of natural radionuclides in the building materials of the laboratory. The detector design used in the simulations is validated by comparing computed and measured Full Energy Peak Efficiency (FEPE) for point sources <sup>241</sup>Am, <sup>152</sup>Eu, <sup>137</sup>Cs, <sup>133</sup>Ba, and <sup>60</sup>Co. Adjoint MC simulations are used to compute the activity concentration of natural radionuclides assuming an isotropic distribution. The activity concentration of <sup>40</sup>K, <sup>226</sup>Ra and <sup>232</sup>Th in the building material is found to be 524 ± 140, 83 ± 20 and 65 ± 18 Bqkg<sup>−1</sup>, respectively. The computed values are found in good agreement with the published data. The natural radioactivity levels of <sup>40</sup>K, <sup>226</sup>Ra and <sup>232</sup>Th measured in lead shielding are 155.7 ± 0.1 mBqkg<sup>−1</sup>, 24 ± 13 mBqkg<sup>−1</sup> and 33 ± 17 mBqkg<sup>−1</sup> respectively. The radiological risks arising due to natural radioactivity is assessed by calculating radium equivalent activity (Raeq), indoor radiation hazard index (Hin) and annual effective dose equivalent. All the radiological parameters are found below their permissible limits and building materials may be considered radiologically safe. The optimal lead shield thickness for the detector is determined to be 12 cm, resulting in reduction of background signal by two orders of magnitude compared to an unshielded detector. The adjoint MC simulations in Geant4 are 10<sup>3</sup>-10<sup>4</sup> times more rapid as compared to normal simulations for shield optimization of HPGe detectors and therefore, are identified as viable computing solution to calculate the activity of the background radiation.</p></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of zirconium aspartic acid metal-organic framework (MIP-202(Zr)) for high efficient ruthenium adsorption from aqueous solutions","authors":"","doi":"10.1016/j.apradiso.2024.111461","DOIUrl":"10.1016/j.apradiso.2024.111461","url":null,"abstract":"<div><p>The zirconium metal – organic framework MIP-202(Zr), based on L-aspartic acid, was prepared by hydrothermal method and used for study of ruthenium adsorption from aqueous solutions. The obtained material was characterized by X-ray diffraction (XRD), infra red spectroscopy (IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The batch adsorption experiment was performed for determination of adsorption equilibrium, kinetics and thermodynamics parameters to Ru(III) from aqueous solution on MIP-202(Zr). The data of ruthenium sorption onto MIP-202(Zr) were fitted and analyzed by the Langmuir, Freundlich and Temkin equilibrium isotherm models, while the Langumir adsorption isotherm models fit the best. Kinetic data were analyzed by four kinetic models, and ruthenium sorption on MIP202(Zr) can be describes the best by intra particle diffusion (Weber Morris). Analysis of thermodynamic properties of ruthenium ions sorption onto MIP-202(Zr) shows that the sorption process has a spontaneous and endothermic nature and is energetically beneficial.</p></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0969804324002896/pdfft?md5=98fc61ce7ad69a3988e92aa77eeca103&pid=1-s2.0-S0969804324002896-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assess human blood uranium levels of some Iraqi companies","authors":"","doi":"10.1016/j.apradiso.2024.111470","DOIUrl":"10.1016/j.apradiso.2024.111470","url":null,"abstract":"<div><p>The goal of this study is to measure the uranium concentration levels in the blood of Iraqi workers employed in certain government companies. Assessing the initial level of uranium toxicity in their blood and the possibility of health problems occurring. 184 blood samples from Iraqi government companies and the control group were collected in this study. A solid-state nuclear track detector (CR-39) was used to measure the amount of uranium present. Two drops of blood (100 μl) were placed on CR-39. The CR-39 was irradiated with a thermal neutron using the fission-track technique (<sup>241</sup>Am-<sup>9</sup>Be) to determine the uranium concentration in blood samples. The statistical analysis is carried out using the Origin Lab 2024 version. The results show the average of uranium concentration at all locations has a higher level compared to the control group. The blood samples from workers at the phosphate company had the highest amount (1.021 ± 0.050 μg/l), compared to samples from other factories. This result confirms that there is a connection between the concentration of uranium and phosphate substances. The results suggest that there is a slight increase in uranium levels that is related to both age and years of employment.</p></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141942159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}