Baki Osman Bekgöz, Zerrin Günkaya, Kemal Özkan, Metin Özkan, Aysun Özkan, Müfide Banar
{"title":"Regression based prediction of higher heating value for refuse-derived fuel using convolutional neural networks predicted elemental data and spectrographic measurements","authors":"Baki Osman Bekgöz, Zerrin Günkaya, Kemal Özkan, Metin Özkan, Aysun Özkan, Müfide Banar","doi":"10.1007/s42768-023-00187-7","DOIUrl":"10.1007/s42768-023-00187-7","url":null,"abstract":"<div><p>Higher heating value (HHV) is the key parameter for replacing Refuse-Derived Fuel (RDF) with fossil fuels in the cement industry. HHV can be measured with a bomb calorimeter or predicted from direct elemental data by using regression models. Both methods require the continuous use of special laboratory equipment and are time consuming. To overcome these limitations, this study aims to predict the HHV value of RDF from predicted elemental data by using regression models. Therefore, once the predicted elemental data are generated, there will be no need to have continuous elemental data to predict HHV. Predicted elemental data were generated from direct elemental data and Near Infrared (NIR) camera-based spectrometric data by using a deep learning model. A convolutional neural networks (CNN) model was used for deep learning and was trained with 10,500 NIR image samples, each of which was 28×28×1. Different regression models (Linear, Tree, Support-Vector Machine, Ensemble and Gaussian process) were applied for HHV prediction. According to these results, higher <i>R</i><sup>2</sup> values (>0.85) were obtained with Gaussian process models (except for the Rational Quadratic model) for the predicted elemental data. Among the Gaussian models, the highest <i>R</i><sup>2</sup> (0.95) but the lowest Root Mean Square Error (RMSE) (0.0563), Mean Squared Error (MSE) (0.0317) and Mean Absolute Error (MAE) (0.0431) were obtained with the Mattern 5/2 model. The results of predictions from predicted elemental data were compared to predictions from direct elemental data. The results show that the regression from predicted elemental data has an adequate prediction (<i>R</i><sup>2</sup>=0.95) compared to the prediction from the direct elemental data (<i>R</i><sup>2</sup>=0.99).</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 3","pages":"429 - 437"},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-023-00187-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140675510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yiming Li, Zhihao Yu, Mengyan Guo, Ming Zhang, Jian Xiong, Yina Qiao, Rui Zhang, Xuebin Lu
{"title":"Preparation of crab-shell-based N, O co-doped graded porous carbon for supercapacitors using the confined nanospace deposition method","authors":"Yiming Li, Zhihao Yu, Mengyan Guo, Ming Zhang, Jian Xiong, Yina Qiao, Rui Zhang, Xuebin Lu","doi":"10.1007/s42768-024-00199-x","DOIUrl":"10.1007/s42768-024-00199-x","url":null,"abstract":"<div><p>Biomass-based carbon materials with hierarchical porous structures have attracted attention for their ability to provide more channels and shorten ion transport paths. Here, we developed a simple method based on confined nanospace deposition. During high-temperature treatment, the mesoporous silica layer wrapped around the outside of the crab shells acted as a closed nanospace and effectively suppressed the severe deformation of the crab shell structure by shrinking inward. The prepared carbon material has a layered porous structure with abundant and stable N and O co-doping (N 7.32%, O 3.69%). The specific capacitance of the three-electrode system was 134.3 F/g at a current density of 0.5 A/g in a 6 mol/L KOH electrolyte, and the assembled aqueous symmetric supercapacitors exhibited an excellent cycling stability of 98.81% even after 5000 cycles.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 2","pages":"173 - 183"},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global household infectious waste management strategies: a systematic review","authors":"Leila Mohammadinia, Khadijeh Raei, Fathollah Gholami-Borujeni","doi":"10.1007/s42768-024-00192-4","DOIUrl":"10.1007/s42768-024-00192-4","url":null,"abstract":"<div><p>Infectious waste management is a major environmental and public health challenge worldwide. Household infectious wastes are often mixed with other waste, collected, and disposed of without taking measures to reduce risks. With the emergence of the COVID-19 virus in early December 2019, there have been concerns about the dangers of infectious waste generated in healthcare facilities and homes. Therefore, this review was conducted with the aim of investigating the methods of household infectious waste management in different countries/regions and evaluating the factors affecting the management of household infectious waste. In this study, we conducted a systematic literature search in four electronic databases (PubMed, Web of Science, Scopus, and ProQuest) to answer the research questions. This process was based on the new version of PRISMA guidelines. In total, 52 documents out of 6742 were selected and evaluated. The review of studies based on content analysis led to the emergence of 12 main themes, 36 sub-themes, and 112 codes. The main topics included education and culture, management measures, legal social support, economic support, technology, control and evaluation, waste generation, classification and collection, temporary storage, transportation, processing and recycling, and safe disposal. The factors affecting household infectious waste management identified in this research can serve as a basis for future studies. It is also suitable for providing a comprehensive guide to the management of household infectious waste.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 3","pages":"371 - 384"},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent trends on energy-efficient solar dryers for food and agricultural products drying: a review","authors":"Kavati Venkateswarlu, S. V. Kota Reddy","doi":"10.1007/s42768-024-00193-3","DOIUrl":"10.1007/s42768-024-00193-3","url":null,"abstract":"<div><p>The energy efficiency enhancement of solar dryers has attracted the attention of researchers worldwide because of the need for energy storage in solar drying applications, which arises primarily from the irregular nature of solar energy that leads to improper drying which will reduce the quality of the products being dried. This work comprehensively reviews the state-of-the-art research carried out on solar dryers for energy efficiency enhancement using various alternative strategies, including hybrid solar dryers that use auxiliary heating sources, such as electric heaters or biomass heaters, solar-assisted heat pump dryer, use of desiccant materials, and heat storage systems that use both sensible and latent heat storage. The advent of phase change materials (PCM), such as thermally and chemically stable PCMs, for long-term storage, bio-degradable and bio-compatible PCM materials to alleviate the negative environmental impact of conventional PCMs is also presented. The performance parameters considered for evaluating dryers include the maximum temperature attained inside the drying chamber, drying time and efficiency, specific moisture extraction rate (SMER), energy and exergy efficiency and CO<sub>2</sub> mitigation effect. The factors considered to analyze the PCMs application in solar dryers include cost and sustainability of PCMs, and both energy and exergy analyses of dryers using PCMs. The gaps in current knowledge and future scope for further improvement of solar dryers are also elucidated.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 3","pages":"335 - 353"},"PeriodicalIF":0.0,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-024-00193-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdul Sattar Jatoi, Jawad Ahmed, Afaque Ahmed Bhutto, Muhammad Shuaib Shaikh
{"title":"Sustainable bio-energy generation via the conversion of spent wash using dual chamber microbial fuel cell","authors":"Abdul Sattar Jatoi, Jawad Ahmed, Afaque Ahmed Bhutto, Muhammad Shuaib Shaikh","doi":"10.1007/s42768-024-00189-z","DOIUrl":"10.1007/s42768-024-00189-z","url":null,"abstract":"<div><p>Microbial fuel cells (MFCs) are innovative devices that combine microbial processes with electrochemical reactions to convert organic matter in wastewater into electricity while simultaneously treating the wastewater. One such application is the treatment of spent wash, a highly polluting effluent generated from the distillery industry after crude mesh is separated into ethanol and spent wash. Spent wash, also known as distillery effluent or stillage, is a highly challenging wastewater treatment method due to its high chemical oxygen demand (COD), biological oxygen demand (BOD), and total dissolved solids (TDS). These characteristics make it a complex and polluting industrial effluent that requires specialized treatment processes to reduce its environmental impact effectively. However, MFCs have shown promise in treating spent wash, as they can utilize the organic matter in wastewater as a fuel source for microbial growth as well as for electricity generation. For the treatment of spent wash, <i>Saccharomyces cerevisiae</i> sp. was used as a biocatalyst along with 340 mol/L potassium ferricyanide in the cathode chamber and 170 mol/L methylene blue in the anode as a mediator. All tests were conducted by balancing a one-liter volume for power production from spent wash in MFC with the optimal conditions of 10% agarose, pH 8.5, 300 mL/min of aeration in the cathode chamber, and 40% (in weight) substrate concentration. At an ideal concentration, the maximum current and power density are roughly 53.41 mA/m<sup>2</sup> and 72.22 mW/m<sup>2</sup>, respectively. For each litre of processed spent wash, a maximum voltage of 850 mV (4.5 mA) was obtained. Amazingly, 91% of COD and BOD were removed from the effluent MFC. These findings show that MFCs are capable of producing electricity and efficiently removing COD from wasted wash at the same time.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 2","pages":"219 - 231"},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohd Syazwan Mohd Ghazali, Mohd Saufi Md Zaini, Muhammad Arshad, Syed Shatir A. Syed-Hassan
{"title":"Co-production of biochar and carbon nanotube from sewage sludge in a two-stage process coupling pyrolysis and catalytic chemical vapor deposition","authors":"Mohd Syazwan Mohd Ghazali, Mohd Saufi Md Zaini, Muhammad Arshad, Syed Shatir A. Syed-Hassan","doi":"10.1007/s42768-024-00194-2","DOIUrl":"10.1007/s42768-024-00194-2","url":null,"abstract":"<div><p>This study explores the potential of valorizing sewage sludge as a carbon source for the co-production of biochar and carbon nanomaterial via a two-stage thermal-catalytic process. In the first stage, sewage sludge underwent slow pyrolysis, resulting in a biochar yield of 66% (in weight) at 550 °C. The resulting pyrolysis vapor was then introduced into a second reactor, where catalytic chemical vapor deposition (CCVD) took place in the presence of a cobalt catalyst, leading to the production of carbon nanotubes (CNTs). It was found that CNTs with an inner diameter of ~ 3.2 nm and an outer diameter of 20–40 nm can be formed in the second stage reactor at temperatures between 650 °C and 950 °C with a maximum yield of 30% (in weight) under the employed experimental conditions. The obtained CNTs displayed a multiwall structure, exhibited a lack of crystallinity, and demonstrated a high level of disorder. The research findings also indicate that temperature exerts a significant influence on both the yield and properties of the CNTs synthesized.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 3","pages":"323 - 334"},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140298299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of ion size on the charge storage mechanism of MXenes: a combination of experimental and computational study","authors":"Huiwen Wan, Rui Wang, Huiyang Fan, Hongbo Gao, Yucheng Chen, Zhu Liu","doi":"10.1007/s42768-023-00188-6","DOIUrl":"10.1007/s42768-023-00188-6","url":null,"abstract":"<div><p>MXene nanomaterials have attracted great interest as the electrode of supercapacitors. However, its energy storage mechanisms in organic electrolytes are still unclear. This work investigated the size effect of cations (i.e., Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, and EMIM<sup>+</sup>) on the capacitive behaviors of MXene-based supercapacitors. The experimental results demonstrate that the specific capacitance increases obviously with decreasing cation size (i.e., from 43 F g<sup>−1</sup> (EMIM<sup>+</sup>) to 129 F g<sup>−1</sup> (Li<sup>+</sup>) at 2 mV s<sup>−1</sup>). Density-functional theory calculation reveals a correlation between cation size and ion–electrode surface interaction, supporting experimental observations of the capacitive-dominant behavior. Molecular dynamics simulations reveal that the ionic solvation structure and desolvation degree of intercalated cations as a function of solvation size, providing dynamic insights into the experimentally observed specific capacitance trends. Our comprehensive experimental and computational study provides valuable insights into the intricate solvation effects governing the charge storage mechanisms. This finding of ion dynamics, solvation structure, and desolvation may contribute to guide the design and optimization of appropriate ions/electrolytes combinations for MXene-based supercapacitors.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 2","pages":"163 - 171"},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140168826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maraim Kh. Uoda, Hussein Q. Hussein, Rana R. Jalil
{"title":"Synthesis and characterization of nanocarbon from waste batteries via an eco-friendly method","authors":"Maraim Kh. Uoda, Hussein Q. Hussein, Rana R. Jalil","doi":"10.1007/s42768-023-00180-0","DOIUrl":"10.1007/s42768-023-00180-0","url":null,"abstract":"<div><p>The widespread use of disposable batteries to power common electronic devices is a major source of e-waste. There are growing environmental and health concerns due to the expansion of e-waste around the world. Hence, developing a reliable system for recycling old batteries has reached the top of the recycling priority list. The current study presents a novel approach to synthesis carbon nanoparticles (CNPs) from spent batteries via an eco-friendly method that offers economical, environment-friendly, and nontoxic approaches in comparison to conventional chemical methods. The synthesized nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX), powder X-ray diffractometry (XRD), UV–VIS absorption analysis (UV), Fourier transform infrared spectroscopy (FT-IR), Atomic force microscope (AFM), and thermo-gravimetric analysis (TGA). The average diameter of the synthesized particles was 40.16 nm, and the particles tended to be aspherical in shape. EDX analysis also predicted the presence of pure carbon, with some contamination arrived at 15% (in weight). This is a novel study in which nanocarbons were synthesized in a brine (7600×10<sup>−6</sup>) from a target (CNPs>75 nm), which paves the way for future use of CNPs derived from spent batteries and helps the environment by decreasing the amount of electronic waste dumped in landfills.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 2","pages":"197 - 208"},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140155679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determination of characteristics for mechanically separated organic fraction of MSW at a full-scale anaerobic digestion plant","authors":"Yagmur Kabakci, Sadiye Kosar, Ozgur Dogan, Fehmi Gorkem Uctug, Osman Atilla Arikan","doi":"10.1007/s42768-023-00183-x","DOIUrl":"10.1007/s42768-023-00183-x","url":null,"abstract":"<div><p>Anaerobic digestion (AD) as a waste management method has the potential to reduce greenhouse gas emissions while producing renewable energy, making it a viable option for managing the organic fraction of municipal solid waste (OFMSW). OFMSW characteristics can vary depending on factors such as waste source, composition and separation units. The characteristics of OFMSW are critical for analyzing and monitoring the AD process to optimize biogas production. In this study, the waste composition and physicochemical characteristics of the mechanically separated OFMSW (ms-OFMSW) were determined at a full-scale AD plant in Türkiye. The ms-OFMSW samples were collected monthly after mechanical separation and were subsequently sent to the anaerobic digester. The composition and physicochemical characteristics of the samples were determined by manual sorting. The results showed that the majority of the ms-OFMSW (76.45%±1.71%) was organic, while 8.99%±1.56% was recyclable and 14.56%±1.69% was non-recyclable. Loss of environmental benefits for the recyclable materials was determined using a free online tool provided by Environmental Protection Agency. Metals (399.7 GJ) and plastics (403.7 GJ) both saved nearly the same amount of energy while metals saved the most water (421.8 m<sup>3</sup>), with the greatest positive impact. Greenhouse benefits ranged from 3 tons to 40 tons of carbon dioxide equivalent for each waste stream. These findings suggest that efficient pre-separation units can improve the anaerobic digestibility of OFMSW, while also providing greater environmental benefits by preventing recyclable waste from the anaerobic digester. In addition to encouraging source separation applications, this study demonstrates the need for improved technologies to separate OFMSW from mixed MSW.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 2","pages":"233 - 241"},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140057505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review on the chemical speciation and influencing factors of heavy metals in Municipal Solid Waste landfill humus","authors":"Qiongyu Sun, Bo Sun, Defeng Wang, Yuyuan Pu, Mingxiu Zhan, Xu Xu, Jinqing Wang, Wentao Jiao","doi":"10.1007/s42768-023-00186-8","DOIUrl":"10.1007/s42768-023-00186-8","url":null,"abstract":"<div><p>Heavy metal pollution in landfill humus can cause serious environmental problems and may endanger soil ecosystems and human health. The biological toxicity of heavy metals is not only related to their total amount but also influenced to a greater extent by the distribution of their chemical speciation. Exploring the different chemical speciation and proportions of heavy metals can provide a more comprehensive and accurate understanding of the pollution characteristics and biological toxicity of heavy metals in landfill soil. Based on a review of the relevant literature, this paper systematically summarizes the recent research status of typical heavy metal chemical speciation in landfill humus. This chemical speciation is diverse and complex. For instance, heavy metals in residual states and organically bound states have little impact on organisms, while heavy metals in exchangeable states and Fe–Mn oxide states can easily migrate and transform. The chemical speciation of heavy metals is affected by many factors, among which the soil pH and organic matter content are some of the most important factors. Finally, the existing gaps in the current research on the chemical speciation of heavy metals in landfills are described and future research directions are proposed. This work provides a theoretical reference for researching the restoration of heavy metal-contaminated humus soil and the resource utilization of humus soil.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 2","pages":"209 - 218"},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139981371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}