{"title":"Mimas: Frozen Fragment, Ring Relic, or Emerging Ocean World?","authors":"A. Rhoden","doi":"10.1146/annurev-earth-031621-061221","DOIUrl":"https://doi.org/10.1146/annurev-earth-031621-061221","url":null,"abstract":"Mimas, the smallest and innermost of Saturn's mid-sized moons, has a heavily cratered surface devoid of the intricate fracture systems of its neighbor, Enceladus. However, Cassini measurements identified a signature of an ocean under Mimas’ ice shell, although a frozen ice shell over a rocky interior could not be ruled out. The Mimas ocean hypothesis has stimulated inquiry into Mimas’ geologic history and orbital evolution. Here, we summarize the results of these investigations, which (perhaps surprisingly) are consistent with an ocean-bearing Mimas as long as it is geologically young. In that case, a ring origin for Mimas is favored over primordial accretion. An independently developed model for the formation of a gap in Saturn's rings provides a potential mechanism for generating a late-stage ocean within Mimas and may have assisted in the development of Enceladus’ ocean and associated geologic activity. Rather than a battered relic, Mimas may be the youngest ocean moon in the Saturn system, destined to join Enceladus as an active world in the future. The presence of oceans within Saturn's mid-sized moons also has implications for the habitability of Uranus’ moons; the Uranus system was chosen as the highest priority target for the next NASA Flagship-class mission. ▪ Models of Mimas’ tides and rotation state support a present-day internal ocean. ▪ Mimas’ craters, impact basin, and lack of widespread tectonism are compatible with a stable/warming ocean. ▪ The formation of the Cassini Division within Saturn's rings provides a potential pathway to a present-day ocean within Mimas. ▪ If Mimas has an ocean today, it is geologically young.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"9 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80702588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W. Matthaeus, S. Macarewich, J. Richey, I. Montañez, J. McElwain, Joseph White, Jonathan P. Wilson, C. Poulsen
{"title":"A Systems Approach to Understanding How Plants Transformed Earth's Environment in Deep Time","authors":"W. Matthaeus, S. Macarewich, J. Richey, I. Montañez, J. McElwain, Joseph White, Jonathan P. Wilson, C. Poulsen","doi":"10.1146/annurev-earth-080222-082017","DOIUrl":"https://doi.org/10.1146/annurev-earth-080222-082017","url":null,"abstract":"Terrestrial plants have transformed Earth's surface environments by altering water, energy, and biogeochemical cycles. Studying vegetation-climate interaction in deep time has necessarily relied on modern-plant analogs to represent paleo-ecosystems—as methods for reconstructing paleo- and, in particular, extinct-plant function were lacking. This approach is potentially compromised given that plant physiology has evolved through time, and some paleo-plants have no clear modern analog. Advancements in the quantitative reconstruction of whole-plant function provide new opportunities to replace modern-plant analogs and capture age-specific vegetation-climate interactions. Here, we review recent investigations of paleo-plant performance through the integration of fossil and geologic data with process-based ecosystem- to Earth system–scale models to explore how early vascular plants responded to and influenced climate. First, we present an argument for characterizing extinct plants in terms of ecological and evolutionary theory to provide a framework for advancing reconstructed vegetation-climate interactions in deep time. We discuss the novel mechanistic understanding provided by applying these approaches to plants of the late Paleozoic ever-wet tropics and at higher latitudes. Finally, we discuss preliminary applications to paleo-plants in a state-of-the-art Earth system model to highlight the potential implications of different plant functional strategies on our understanding of vegetation-climate interactions in deep time. ▪ For hundreds of millions of years, plants have been a keystone in maintaining the status of Earth's atmosphere, oceans, and climate. ▪ Extinct plants have functioned differently across time, limiting our understanding of how processes on Earth interact to produce climate. ▪ New methods, reviewed here, allow quantitative reconstruction of extinct-plant function based on the fossil record. ▪ Integrating extinct plants into ecosystem and climate models will expand our understanding of vegetation's role in past environmental change.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"121 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90749833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edward W. Maibach, Sri Saahitya Uppalapati, Margaret Orr, Jagadish Thaker
{"title":"Harnessing the Power of Communication and Behavior Science to Enhance Society's Response to Climate Change","authors":"Edward W. Maibach, Sri Saahitya Uppalapati, Margaret Orr, Jagadish Thaker","doi":"10.1146/annurev-earth-031621-114417","DOIUrl":"https://doi.org/10.1146/annurev-earth-031621-114417","url":null,"abstract":"A science-based understanding of climate change and potential mitigation and adaptation options can provide decision makers with important guidance in making decisions about how best to respond to the many challenges inherent in climate change. In this review we provide an evidence-based heuristic for guiding efforts to share science-based information about climate change with decision makers and the public at large. Well-informed decision makers are likely to make better decisions, but for a range of reasons, their inclinations to act on their decisions are not always realized into effective actions. We therefore also provide a second evidence-based heuristic for helping people and organizations change their climate change–relevant behaviors, should they decide to. These two guiding heuristics can help scientists and others harness the power of communication and behavior science in service of enhancing society's response to climate change. ▪ Many Earth scientists seeking to contribute to the climate science translation process feel frustrated by the inadequacy of the societal response. ▪ Here we summarize the social science literature by offering two guiding principles to guide communication and behavior change efforts. ▪ To improve public understanding, we recommend simple, clear messages, repeated often, by a variety of trusted and caring messengers. ▪ To encourage uptake of useful behaviors, we recommend making the behaviors easy, fun, and popular.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135194796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neogene History of the Amazonian Flora: A Perspective Based on Geological, Palynological, and Molecular Phylogenetic Data","authors":"C. Hoorn, L. Lohmann, L. Boschman, F. Condamine","doi":"10.1146/annurev-earth-081522-090454","DOIUrl":"https://doi.org/10.1146/annurev-earth-081522-090454","url":null,"abstract":"The Amazon hosts one of the largest and richest rainforests in the world, but its origins remain debated. Growing evidence suggests that geodiversity and geological history played essential roles in shaping the Amazonian flora. Here we summarize the geo-climatic history of the Amazon and review paleopalynological records and time-calibrated phylogenies to evaluate the response of plants to environmental change. The Neogene fossil record suggests major sequential changes in plant composition and an overall decline in diversity. Phylogenies of eight Amazonian plant clades paint a mixed picture, with the diversification of most groups best explained by constant speciation rates through time, while others indicate clade-specific increases or decreases correlated with climatic cooling or increasing Andean elevation. Overall, the Amazon forest seems to represent a museum of diversity with a high potential for biological diversification through time. To fully understand how the Amazon got its modern biodiversity, further multidisciplinary studies conducted within a multimillion-year perspective are needed. ▪ The history of the Amazon rainforest goes back to the beginning of the Cenozoic (66 Ma) and was driven by climate and geological forces. ▪ In the early Neogene (23–13.8 Ma), a large wetland developed with episodic estuarine conditions and vegetation ranging from mangroves to terra firme forest. ▪ In the late Neogene (13.8–2.6 Ma), the Amazon changed into a fluvial landscape with a less diverse and more open forest, although the details of this transition remain to be resolved. ▪ These geo-climatic changes have left imprints on the modern Amazonian diversity that can be recovered with dated phylogenetic trees. ▪ Amazonian plant groups show distinct responses to environmental changes, suggesting that Amazonia is both a refuge and a cradle of biodiversity.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"4 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89353410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Role of Giant Impacts in Planet Formation","authors":"T. Gabriel, S. Cambioni","doi":"10.1146/annurev-earth-031621-055545","DOIUrl":"https://doi.org/10.1146/annurev-earth-031621-055545","url":null,"abstract":"Planets are expected to conclude their growth through a series of giant impacts: energetic, global events that significantly alter planetary composition and evolution. Computer models and theory have elucidated the diverse outcomes of giant impacts in detail, improving our ability to interpret collision conditions from observations of their remnants. However, many open questions remain, as even the formation of the Moon—a widely suspected giant-impact product for which we have the most information—is still debated. We review giant-impact theory, the diverse nature of giant-impact outcomes, and the governing physical processes. We discuss the importance of computer simulations, informed by experiments, for accurately modeling the impact process. Finally, we outline how the application of probability theory and computational advancements can assist in inferring collision histories from observations, and we identify promising opportunities for advancing giant-impact theory in the future. ▪ Giant impacts exhibit diverse possible outcomes leading to changes in planetary mass, composition, and thermal history depending on the conditions. ▪ Improvements to computer simulation methodologies and new laboratory experiments provide critical insights into the detailed outcomes of giant impacts. ▪ When colliding planets are similar in size, they can merge or escape one another with roughly equal probability, but with different effects on their resulting masses, densities, and orbits. ▪ Different sequences of giant impacts can produce similar planets, encouraging the use of probability theory to evaluate distinct formation hypothesis.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"46 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74207294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Rock-Hosted Biosphere","authors":"A. Templeton, Tristan A. Caro","doi":"10.1146/annurev-earth-031920-081957","DOIUrl":"https://doi.org/10.1146/annurev-earth-031920-081957","url":null,"abstract":"Our understanding of Earth's rock-hosted subsurface biosphere has advanced over the past two decades through the collection and analysis of fluids and rocks from aquifers within the continental and oceanic crust. Improvements in cell extraction, cell sorting, DNA sequencing, and techniques for detecting cell distributions and activity have revealed how the combination of lithology, permeability, and fluid mixing processes controls the diversity and heterogeneous distribution of microbial communities in fractured rock systems. However, the functions of most organisms, and the rates of their activity and growth, remain largely unknown. To mechanistically understand what physiochemical and hydrological factors control the rock-hosted biosphere, future studies are needed to characterize the physiology of microorganisms adapted to mineral-associated growth under energy- and nutrient-limited conditions. Experiments should be designed to detect synergistic interactions between microorganisms, and between microorganisms and minerals, at highly variable turnover rates. ▪ The heterogeneous distribution of the rock-hosted biosphere is controlled by variations in porosity, permeability, and chemical disequilibrium. ▪ Several imaging and chemical techniques can sensitively detect microbial activity within the rock-hosted biosphere. ▪ The physiology and turnover rates of the subsurface rock-hosted biosphere remain poorly known.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"8 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77804145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaap H. Nienhuis, Wonsuck Kim, Glenn A. Milne, Melinda Quock, Aimée B.A. Slangen, Torbjörn E. Törnqvist
{"title":"River Deltas and Sea-Level Rise","authors":"Jaap H. Nienhuis, Wonsuck Kim, Glenn A. Milne, Melinda Quock, Aimée B.A. Slangen, Torbjörn E. Törnqvist","doi":"10.1146/annurev-earth-031621-093732","DOIUrl":"https://doi.org/10.1146/annurev-earth-031621-093732","url":null,"abstract":"Future sea-level rise poses an existential threat for many river deltas, yet quantifying the effect of sea-level changes on these coastal landforms remains a challenge. Sea-level changes have been slow compared to other coastal processes during the instrumental record, such that our knowledge comes primarily from models, experiments, and the geologic record. Here we review the current state of science on river delta response to sea-level change, including models and observations from the Holocene until 2300 CE. We report on improvements in the detection and modeling of past and future regional sea-level change, including a better understanding of the underlying processes and sources of uncertainty. We also see significant improvements in morphodynamic delta models. Still, substantial uncertainties remain, notably on present and future subsidence rates in and near deltas. Observations of delta submergence and land loss due to modern sea-level rise also remain elusive, posing major challenges to model validation. ▪ There are large differences in the initiation time and subsequent delta progradation during the Holocene, likely from different sea-level and sediment supply histories. ▪ Modern deltas are larger and will face faster sea-level rise than during their Holocene growth, making them susceptible to forced transgression. ▪ Regional sea-level projections have been much improved in the past decade and now also isolate dominant sources of uncertainty, such as the Antarctic ice sheet. ▪ Vertical land motion in deltas can be the dominant source of relative sea-level change and the dominant source of uncertainty; limited observations complicate projections. ▪ River deltas globally might lose 5% (∼35,000 km 2 ) of their surface area by 2100 and 50% by 2300 due to relative sea-level rise under a high-emission scenario.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135195806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frontiers of Carbonate Clumped Isotope Thermometry","authors":"K. Huntington, S. Petersen","doi":"10.1146/annurev-earth-031621-085949","DOIUrl":"https://doi.org/10.1146/annurev-earth-031621-085949","url":null,"abstract":"Carbonate minerals contain stable isotopes of carbon and oxygen with different masses whose abundances and bond arrangement are governed by thermodynamics. The clumped isotopic value Δi is a measure of the temperature-dependent preference of heavy C and O isotopes to clump, or bond with or near each other, rather than with light isotopes in the carbonate phase. Carbonate clumped isotope thermometry uses Δi values measured by mass spectrometry (Δ47, Δ48) or laser spectroscopy (Δ638) to reconstruct mineral growth temperature in surface and subsurface environments independent of parent water isotopic composition. Two decades of analytical and theoretical development have produced a mature temperature proxy that can estimate carbonate formation temperatures from 0.5 to 1,100°C, with up to 1–2°C external precision (2 standard error of the mean). Alteration of primary environmental temperatures by fluid-mediated and solid-state reactions and/or Δi values that reflect nonequilibrium isotopic fractionations reveal diagenetic history and/or mineralization processes. Carbonate clumped isotope thermometry has contributed significantly to geological and biological sciences, and it is poised to advance understanding of Earth's climate system, crustal processes, and growth environments of carbonate minerals. ▪ Clumped heavy isotopes in carbonate minerals record robust temperatures and fluid compositions of ancient Earth surface and subsurface environments. ▪ Mature analytical methods enable carbonate clumped Δ47, Δ48, and Δ638 measurements to address diverse questions in geological and biological sciences. ▪ These methods are poised to advance marine and terrestrial paleoenvironment and paleoclimate, tectonics, deformation, hydrothermal, and mineralization studies. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 51 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"257 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79526682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ductile Deformation of the Lithospheric Mantle","authors":"J. Warren, L. Hansen","doi":"10.1146/annurev-earth-031621-063756","DOIUrl":"https://doi.org/10.1146/annurev-earth-031621-063756","url":null,"abstract":"The strength of lithospheric plates is a central component of plate tectonics, governed by brittle processes in the shallow portion of the plate and ductile behavior in the deeper portion. We review experimental constraints on ductile deformation of olivine, the main mineral in the upper mantle and thus the lithosphere. Olivine deforms by four major mechanisms: low-temperature plasticity, dislocation creep, dislocation-accommodated grain-boundary sliding (GBS), and diffusion-accommodated grain-boundary sliding (diffusion creep). Deformation in most of the lithosphere is dominated by GBS, except in shear zones—in which diffusion creep dominates—and in the brittle-ductile transition—in which low-temperature plasticity may dominate. We find that observations from naturally deformed rocks are consistent with extrapolation of the experimentally constrained olivine flow laws to geological conditions but that geophysical observations predict a weaker lithosphere. The causes of this discrepancy are unresolved but likely reside in the uncertainty surrounding processes in the brittle-ductile transition, at which the lithosphere is strongest. ▪ Ductile deformation of the lithospheric mantle is constrained by experimental data for olivine. ▪ Olivine deforms by four major mechanisms: low-temperature plasticity, dislocation creep, dislocation-accommodated grain-boundary sliding, and diffusion creep. ▪ Observations of naturally deformed rocks are consistent with extrapolation of olivine flow laws from experimental conditions. ▪ Experiments predict stronger lithosphere than geophysical observations, likely due to gaps in constraints on deformation in the brittle-ductile transition. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 51 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"31 3 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75934073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Lognonné, W.B. Banerdt, J. Clinton, R. F. García, D. Giardini, B. Knapmeyer-Endrun, M. Panning, W.T. Pike
{"title":"Mars Seismology","authors":"P. Lognonné, W.B. Banerdt, J. Clinton, R. F. García, D. Giardini, B. Knapmeyer-Endrun, M. Panning, W.T. Pike","doi":"10.1146/annurev-earth-031621-073318","DOIUrl":"https://doi.org/10.1146/annurev-earth-031621-073318","url":null,"abstract":"For the first time, from early 2019 to the end of 2022, Mars’ shallow and deep interiors have been explored by seismology with the InSight mission. Thanks to the performances of its seismometers and the quality of their robotic installation on the ground, 1,319 seismic events have been detected, including about 90 marsquakes at teleseismic distances, with Mw from 2.5 to 4.7 and at least 6 impacts, the largest ones with craters larger than 130 m. A large fraction of these marsquakes occur in Cerberus Fossae, demonstrating active regional tectonics. Records of pressure-induced seismic noise and signals from the penetration of a heat flow probe have provided subsurface models below the lander. Deeper direct and secondary body wave phase travel time, receiver function, and surface wave analysis have provided the first interior models of Mars, including crustal thickness and crustal layering, mantle structure, thermal lithospheric thickness, and core radius and state. ▪ With InSight's SEIS (Seismic Experiment for Interior Structure of Mars) experiment and for the first time in planetary exploration, Mars’ internal structure and seismicity are constrained. ▪ More than 1,300 seismic events and seismic noise records enable the first comparative seismology studies together with Earth and lunar seismic data. ▪ Inversion of seismic travel times and waveforms provided the first interior model of another terrestrial planet, down to the core. ▪ Several impacts were also seismically recorded with their craters imaged from orbit, providing the first data on impact dynamic on Mars. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 51 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"7 10 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88236847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}