Ulf Büntgen, Nicola Di Cosmo, Jan Esper, Michael Frachetti, Lamya Khalidi, Franz Mauelshagen, Eleonora Rohland, Clive Oppenheimer
{"title":"Volcanoes, Climate, and Society","authors":"Ulf Büntgen, Nicola Di Cosmo, Jan Esper, Michael Frachetti, Lamya Khalidi, Franz Mauelshagen, Eleonora Rohland, Clive Oppenheimer","doi":"10.1146/annurev-earth-032524-013254","DOIUrl":"https://doi.org/10.1146/annurev-earth-032524-013254","url":null,"abstract":"This review examines the societal ramifications of large volcanic eruptions—not the proximal impacts of lava, ash, pumice, and gaseous emissions but rather the consequences of the climate forcing triggered by dispersal of volcanic sulfate aerosol in the stratosphere. Using ice core records of volcanism and tree-ring data of summer temperature anomalies, we analyze 38 preindustrial eruptions that injected an estimated 6 Tg or more of sulfur into the stratosphere. We then explore more than 100 works that consider the volcanism-climate-society nexus, teasing out the key elements of their arguments for or against the role of volcanically forced climate change in far-field societal impacts. As well as summarizing and interrogating the history of ideas and state of the art on this topic, we hope to stimulate further holistic, interdisciplinary approaches to assess the broader implications of volcanic eruptions, particularly for global food security—both in the past and in the future. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> There are compelling arguments to consider the role of volcanically forced climate change in explanations of history. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Such research requires integration of geographical, ecological, demographic, econometric, and other data with historical sources and narratives, and therefore demands cross-disciplinary conversation. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Statistical evidence is needed to attribute weather and climate extremes to volcanic forcing, and agricultural and pastoral responses to climate anomalies must be reconstructed at high spatiotemporal resolution. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Several prominent climate forcing eruptions in circa 304, 1182, 1345, and 1453 CE have hitherto received comparatively little attention. </jats:list-item> </jats:list>","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"630 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144488899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wave Structuring in the Shock Compression of Geologic Matter at the Planetary and Laboratory Scales","authors":"Dennis Grady","doi":"10.1146/annurev-earth-040523-124246","DOIUrl":"https://doi.org/10.1146/annurev-earth-040523-124246","url":null,"abstract":"The response of geologic matter when subjected to large-scale impact or explosion is dependent on the time history of the encompassing shock wave. The kinetics of localized physical and chemical transitions brought about by the shock wave are responsive to this time history. Solid-state viscosity of the media is responsible for establishing the time history of a shock wave. In 2003, researcher H. Jay Melosh recognized the need for an understanding of solid viscosity spanning the petrologic and lithologic scales, and accordingly, he undertook the assessment and analysis of available nuclear ground shock measurements. This review furthers Melosh's epic efforts. In pursuing both the nuclear ground shock data and supporting laboratory test data, it undertakes methods for determining and calculations of the viscosity of solid materials on the respective scales. Further, applicability of viscoelasticity in modeling the shock response on the scales of concern is demonstrated and applied. The review closes with a discussion of universal features of the shock wave viscous time history in solid materials. Solid viscosity as an adiabatic invariant is presented, and commonalties of the solid shock wave with the nonlinear dynamics of ocean waves are noted. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> This article reviews Melosh's analysis of nuclear ground shock measurements with application to shock wave structuring viscosity. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> It discusses viscoelastic calculations with application to wave structure of nuclear ground shocks and laboratory shock waves in brittle granular solids, and universal features of the viscous shock wave structure and invariance of the dissipative action are considered. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> It also discusses wave action invariance in both the nonlinear dynamics of ocean waves and the steady wave structure of shock waves in solid matter. </jats:list-item> </jats:list>","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"28 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144183940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rebecca J. Carey, David A. Butterfield, Malcolm R. Clark
{"title":"Submarine Volcanic Eruptions and Their Impacts on Hydrothermal Systems and Biological Communities","authors":"Rebecca J. Carey, David A. Butterfield, Malcolm R. Clark","doi":"10.1146/annurev-earth-040522-095654","DOIUrl":"https://doi.org/10.1146/annurev-earth-040522-095654","url":null,"abstract":"More than 70% of Earth's magmatic output occurs in the ocean. This volcanism shapes major features of the seafloor, directly impacts the chemical composition of the oceans through water/rock interactions, and drives hydrothermal circulation of seawater. The formation of seafloor mineral deposits and chemosynthetic habitats that encircle the globe along mid-ocean ridges, volcanic arcs, and hotspots is driven by volcanism. The style, magnitude, depth, and frequency of seafloor eruptions create a wide range of physical, chemical, and biological impacts on the seafloor. Research and exploration over the past 30 years have revealed some of the diversity of seafloor eruptions and their impact on the undersea environment. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> Submarine eruptions are simultaneously the most common and the least observed form of volcanism on Earth. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Hydrostatic pressure at the vent depth modulates explosive versus effusive eruption and the form of eruptive behavior. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Submarine eruptions have significant impacts on marine biological communities and chemical fluxes to the ocean. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Resilience of fauna to eruption events is also variable, and recovery dynamics can be slow with many years or decades required for communities to reform. </jats:list-item> </jats:list>","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"61 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144184173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental Thermochemistry Through the Years with Application to Chalcogenides","authors":"Alexandra Navrotsky, Manuel Scharrer","doi":"10.1146/annurev-earth-041023-094742","DOIUrl":"https://doi.org/10.1146/annurev-earth-041023-094742","url":null,"abstract":"Chalcogenides (sulfides, selenides, tellurides, arsenides, antimonides) are important in natural processes, including formation of ore deposits on Earth, early stages of planetary accretion, and formation of condensates in planetary atmospheres. Their physicochemical properties render them suitable for a wide range of industrial applications. While thermodynamic data are available for many endmembers, there are significant gaps in both thermodynamic and associated structural constraints, especially for complex systems. The continuous evolution of high temperature calorimetry into oxidative drop solution calorimetry has facilitated the measurement of enthalpies of formation and mixing and surface energies involving nonoxides, including chalcogenides. These are essential for modeling processes in nature and technology and for understanding the underlying properties that define their stabilities. This article reviews the development of these calorimetric techniques and summarizes available thermochemical data for common chalcogenides. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> Over the last century, calorimetric instruments and techniques have evolved to enable accurate measurement of a wide range of materials, including chalcogenides. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Despite the growing interest in the thermodynamic characterization of chalcogenides, a systematic review of the available data indicates that there is still a significant scope for further research. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> A systematic understanding of chalcogenides will facilitate the modeling of geological environments and enable the prediction and improvement of geo-inspired materials for industrial applications. </jats:list-item> </jats:list>","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"30 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144202034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Anatomy and Lethality of the Siberian Traps Large Igneous Province","authors":"Seth D. Burgess, Benjamin A. Black","doi":"10.1146/annurev-earth-040722-105544","DOIUrl":"https://doi.org/10.1146/annurev-earth-040722-105544","url":null,"abstract":"Emplacement of the Siberian Traps large igneous province (LIP) around 252 Ma coincided with the most profound environmental disruption of the past 500 million years. The enormous volume of the Siberian Traps, its ability to generate greenhouse gases and other volatiles, and a temporal coincidence with extinction all suggest a causal link. Patterns of marine and terrestrial extinction/recovery are consistent with environmental stresses potentially triggered by the Siberian Traps. However, the nature of causal links between the LIP and mass extinction remains enigmatic. Understanding the origins, anatomy, and forcing potential of the Siberian Traps LIP and the spatiotemporal patterns of resulting stresses represents a critical counterpart to high-resolution fossil and proxy records of Permian–Triassic environmental and biotic shifts. This review provides a summary of recent advances and key questions regarding the Siberian Traps in an effort to illuminate what combination of factors made the Siberian Traps a uniquely deadly LIP. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> Large igneous provinces such as the Siberian Traps are capable of triggering global environmental destabilization. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Greenhouse gases generated by Siberian Traps magmatism played a major role in driving the climate changes that triggered the end-Permian mass extinction. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> The end-Permian extinction fundamentally altered the evolutionary trajectory of Earth's biosphere, creating ecological space for many of the organisms seen today. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Determining the timing and patterns of end-Permian marine and terrestrial mortality and recovery and the timing and character of Siberian Traps magmatism is key in understanding the causal link between magmatism and extinction. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Understanding the cause(s) of past extinction events informs hypotheses about current and future environmental destabilization. </jats:list-item> </jats:list>","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"81 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144183941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catherine Badgley, John Barry, Anna K. Behrensmeyer, Thure Cerling, Lawrence J. Flynn, Michèle E. Morgan, David Pilbeam
{"title":"Fifty Years in the Foothills: Ecosystem Evolution in the Neogene Siwalik Record of Pakistan","authors":"Catherine Badgley, John Barry, Anna K. Behrensmeyer, Thure Cerling, Lawrence J. Flynn, Michèle E. Morgan, David Pilbeam","doi":"10.1146/annurev-earth-080723-082338","DOIUrl":"https://doi.org/10.1146/annurev-earth-080723-082338","url":null,"abstract":"The continental fossil record has exceptional, long sequences of fossiliferous strata that are the basis for evaluating ecosystem dynamics and their formative influences. The Siwalik sequence of South Asia is one example. It occurs in the Potwar Plateau (Punjab Province, Pakistan) and spans 18–1 Ma. The sequence consists of alluvial sediments deposited in a foreland basin created by the collision of the Indian and Eurasian tectonic plates. Sediments representing large and small river channels and their associated floodplain deposits correspond to mountain-sourced large rivers and foothill-sourced smaller rivers. Vegetation attributes are recorded in stable carbon isotopes and biomarkers in paleosols. Molluscs, fishes, crocodilians, turtles, lizards, snakes, birds, and mammals are preserved throughout the sequence. Mammalian faunas had exceptionally high species richness (116 species) at their peak and included up to 18 species of co-occurring megaherbivores (>800 kg). Significant changes over time in species richness, taxonomic composition, and ecological structure of mammalian faunas coincided with major changes in climate and vegetation. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> Siwalik strata and fossils document a long continuous sequence of South Asian continental sediments and ecosystems south of the Himalaya Mountains. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> A multidisciplinary analysis of tectonics, fluvial systems, climate history, and vertebrate diversity documents ecosystem dynamics from 18 to 6 million years ago. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> A sparse portion of the Siwalik record coinciding with the Miocene Climatic Optimum raises the possibility that humid heat stress limited occupancy of the floodplain by most mammals for much of this time. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> The timing and magnitude of change in mammalian species richness and ecological structure are consistent with environmental forcing as a significant influence on these features. </jats:list-item> </jats:list>","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"12 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144184168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jessica E. Tierney, Emily J. Judd, Matthew B. Osman, Jonathan M. King, Olivia J. Truax, Nathan J. Steiger, Daniel E. Amrhein, Kevin J. Anchukaitis
{"title":"Advances in Paleoclimate Data Assimilation","authors":"Jessica E. Tierney, Emily J. Judd, Matthew B. Osman, Jonathan M. King, Olivia J. Truax, Nathan J. Steiger, Daniel E. Amrhein, Kevin J. Anchukaitis","doi":"10.1146/annurev-earth-032320-064209","DOIUrl":"https://doi.org/10.1146/annurev-earth-032320-064209","url":null,"abstract":"Reconstructions of past climates in both time and space provide important insight into the range and rate of change within the climate system. However, producing a coherent global picture of past climates is difficult because indicators of past environmental changes (proxy data) are unevenly distributed and uncertain. In recent years, paleoclimate data assimilation (paleoDA), which statistically combines model simulations with proxy data, has become an increasingly popular reconstruction method. Here, we describe advances in paleoDA to date, with a focus on the offline ensemble Kalman filter and the insights into climate change that this method affords. PaleoDA has considerable strengths in that it can blend multiple types of information while also propagating uncertainty. Drawbacks of the methodology include an overreliance on the climate model and variance loss. We conclude with an outlook on possible expansions and improvements in paleoDA that can be made in the upcoming years.<jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> Paleoclimate data assimilation blends model and proxy information to enable spatiotemporal reconstructions of past climate change. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> This method has advanced our understanding of global temperature change, Earth's climate sensitivity, and past climate dynamics. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Future innovations could improve the method by implementing online paleoclimate data assimilation and smoothers. </jats:list-item> </jats:list>","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"10 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143589779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristin D. Bergmann, Francis A. Macdonald, Nicholas L. Swanson-Hysell
{"title":"The Causes and Consequences of Ordovician Cooling","authors":"Kristin D. Bergmann, Francis A. Macdonald, Nicholas L. Swanson-Hysell","doi":"10.1146/annurev-earth-040523-114630","DOIUrl":"https://doi.org/10.1146/annurev-earth-040523-114630","url":null,"abstract":"A long-term cooling trend through the Ordovician Period, from 487 to 443 Ma, is recorded by oxygen isotope data. Tropical ocean basins in the Early Ordovician were hot, which led to low oxygen concentrations in the surface ocean due to the temperature dependence of oxygen solubility. Elevated temperatures also increased metabolic demands such that hot shallow water environments had limited animal diversity as recorded by microbially dominated carbonates. As the oceans cooled through the Ordovician, animal biodiversity increased, leading to the Great Ordovician Biodiversification Event. The protracted nature of the cooling suggests that it was the product of progressive changes in tectonic boundary conditions. Low-latitude arc-continent collisions through this period may have increased global weatherability and decreased atmospheric CO<jats:sub>2</jats:sub> levels. Additionally, decreasing continental arc magmatism could have lowered CO<jats:sub>2</jats:sub> outgassing fluxes. The Ordovician long-term cooling trend culminated with the development of a large south polar ice sheet on Gondwana. The timescale of major ice growth and decay over the final 2 Myr of the Ordovician is consistent with Pleistocene-like glacial cycles driven by orbital forcing. The short duration of large-scale glaciation indicates a high sensitivity of ice volume to temperature with a strongly nonlinear response, providing a valuable analog for Neogene and future climate change. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> Oxygen isotope data record progressive and protracted cooling through the Ordovician leading up to the onset of Hirnantian glaciation. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> The gradual cooling trend is mirrored by an Ordovician radiation in biological diversity, consistent with temperature-dependent oxygen solubility and metabolism as a primary control. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Long-term cooling occurred in concert with low-latitude arc-continent collisions and an increase in global weatherability. Although CO<jats:sub>2</jats:sub> outgassing may have also decreased with an Ordovician decrease in continental arc length, in the modern, CO<jats:sub>2</jats:sub> outgassing is variable along both continental and island arcs, leaving the relationship between continental arc length and climate uncertain. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Evidence for significant ice growth is limited to less than 2 Myr of the Hirnantian Stage, suggesting a high sensitivity of ice growth to <jats:italic>p</jats:italic>CO<jats:sub>2</jats:sub> and temperature. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Independent estimates for ice volume, area, and sea level change during the Hirnantian glacial maximum are internally consistent and comparable to those of the Last Glacial Maximum. </jats:list-item> </jats:list>","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"15 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143518730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naomi M. Levine, Harriet Alexander, Erin M. Bertrand, Victoria J. Coles, Stephanie Dutkiewicz, Suzana G. Leles, Emily J. Zakem
{"title":"Microbial Ecology to Ocean Carbon Cycling: From Genomes to Numerical Models","authors":"Naomi M. Levine, Harriet Alexander, Erin M. Bertrand, Victoria J. Coles, Stephanie Dutkiewicz, Suzana G. Leles, Emily J. Zakem","doi":"10.1146/annurev-earth-040523-020630","DOIUrl":"https://doi.org/10.1146/annurev-earth-040523-020630","url":null,"abstract":"The oceans contain large reservoirs of inorganic and organic carbon and play a critical role in both global carbon cycling and climate. Most of the biogeochemical transformations in the oceans are driven by marine microbes. Thus, molecular processes occurring at the scale of single cells govern global geochemical dynamics, posing a challenge of scales. Understanding the processes controlling ocean carbon cycling from the cellular to the global scale requires the integration of multiple disciplines including microbiology, ecology, biogeochemistry, and computational fields such as numerical models and bioinformatics. A shared language and foundational knowledge will facilitate these interactions. This review provides the state of knowledge on the role marine microbes play in large-scale ocean carbon cycling through the lens of observational oceanography and biogeochemical models. We conclude by outlining ways in which the field can bridge the gap between -omics datasets and ocean models to understand ocean carbon cycling across scales. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> -Omic approaches are providing increasingly quantitative insight into the biogeochemical functions of marine microbial ecosystems. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Numerical models provide a tool for studying global carbon cycling by scaling from the microscale to the global scale. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> The integration of -omics and numerical modeling generates new understanding of how microbial metabolisms and community dynamics set nutrient fluxes in the ocean. </jats:list-item> </jats:list>","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"66 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143470584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stuart Henrys, Dan Bassett, Susan Ellis, Laura Wallace, Philip M. Barnes, Donna Eberhart-Phillips, Demian Saffer, Carolyn Boulton
{"title":"How Subduction Margin Processes and Properties Influence the Hikurangi Subduction Zone","authors":"Stuart Henrys, Dan Bassett, Susan Ellis, Laura Wallace, Philip M. Barnes, Donna Eberhart-Phillips, Demian Saffer, Carolyn Boulton","doi":"10.1146/annurev-earth-040523-115520","DOIUrl":"https://doi.org/10.1146/annurev-earth-040523-115520","url":null,"abstract":"The Hikurangi margin has been an important global focus for subduction zone research for the last decade. International Ocean Discovery Program drilling and geophysical investigations have advanced our understanding of megathrust slip behavior. Along and across the margin, detailed imaging reveals that the megathrust structure varies spatially and evolves over time. Heterogeneous properties of the plate boundary zone and overriding plate are impacted by the evolving nature of regional tectonics and inherited overriding plate structure. Along-strike variability in thickness of subducting sediment and northward increasing influence of seamount subduction strongly influence megathrust lithologies, fluid pressure, and permeability structure. Together, these exert strong control on spatial variations in coupling, slow slip, and seismicity distribution. Thicker incoming sediment, combined with a compressional upper plate, influences deeper coupling at southern Hikurangi, where paleoseismic investigations reveal recurring great (<jats:italic>M</jats:italic> <jats:sub>w</jats:sub> > 8.0) earthquakes. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> The Hikurangi Subduction Zone is marked by large-scale changes in the subducting Pacific Plate and the overlying plate, with varied tectonic stress, crustal thickness, and sediment cover. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> The roughness of the lower plate influences the variability in megathrust slip behavior, particularly where seamounts enhance subduction of fluid-rich sediments. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Variations in sediment composition impact the strength of the subduction interface, with the southern Hikurangi Subduction Zone exhibiting a more uniform megathrust fault. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Properties of the upper plate influence fluid pressures and contribute to the observed along-strike variations in Hikurangi plate coupling and slip behavior. </jats:list-item> </jats:list>","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"6 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143470585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}