{"title":"A Scientist in Russia: My Story","authors":"Sergei M. Stishov","doi":"10.1146/annurev-earth-032924-011101","DOIUrl":"https://doi.org/10.1146/annurev-earth-032924-011101","url":null,"abstract":"Born on December 12, 1937, I remember the first bombing of Moscow by the Germans in 1941. My schooling began in 1944, and I soon became interested in chemistry, setting up a kind of makeshift chemical laboratory behind a high cupboard in my house. I enrolled in Moscow University in 1955 and published my first scientific paper in 1959. After entering graduate school in 1960, I produced dense silica with a rutile structure, a natural analog of which was later named stishovite. I received my doctorate in 1961 and got a job at the Institute of Crystallography in 1962, where I worked until 1993. My first visit to the West was in 1976. I was became a Fairchild Distinguished Scholar at Caltech in 1989–1990 and a member of the USSR Academy of Sciences in 1990. I was a Miller Professor at the University of California, Berkeley and an Orson Anderson Distinguished Scholar at Los Alamos National Laboratory. From 1993 to 2022, I was director of the Institute for High Pressure Physics. During that time, I was awarded the P. Bridgman Gold Medal and the Gold Medal of P. Kapitsa.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"74 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reconstructing Tropical Cyclone Activity from Sedimentary Archives","authors":"Jeffrey P. Donnelly","doi":"10.1146/annurev-earth-040523-021619","DOIUrl":"https://doi.org/10.1146/annurev-earth-040523-021619","url":null,"abstract":"The brevity of the instrumental record limits our knowledge of tropical cyclone activity on multidecadal to longer timescales and hampers our ability to diagnose climatic controls. Sedimentary archives containing event beds provide essential data on tropical cyclone activity over centuries and millennia. This review highlights the advantages and limitations of this approach and how these reconstructions have illuminated patterns of tropical cyclone activity and potential climate drivers over the last millennium. Key elements to developing high-quality reconstructions include confident attribution of event beds to tropical cyclones, assessing the potential role of other mechanisms, and evaluating the potential influence of geomorphic changes, sea-level variations, and sediment supply on a settings’ susceptibility to event bed deposition. Millennium-long histories of severe tropical cyclone occurrence are now available from many locations in the western North Atlantic and western North Pacific,revealing clear regional shifts in activity likely related to intervals of large-scale ocean-atmosphere reorganization. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> Prior to significant human influence in Earth's climate, natural climate variability dramatically altered patterns of tropical cyclone activity. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> For some regions (e.g., The Bahamas and the Marshall Islands), earlier intervals of tropical cyclone activity exceeded what humans have experienced during the recent period of instrumental measurements (∼1850 CE–present). </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Risk assessments based on the short instrumental record likely underestimate the threat posed by tropical cyclones in many regions. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Changes in atmospheric and oceanic circulation associated with the Little Ice Age (∼1400–1800 CE) resulted in significant regional changes in tropical cyclone activity. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Given the past sensitivity of tropical cyclone activity to climate change, we should anticipate regional shifts in tropical cyclone activity in response to ongoing anthropogenic warming of the planet. </jats:list-item> </jats:list>","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"54 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sora L. Kim, Meghan A. Balk, Elizabeth C. Sibert, Lisa Whitenack
{"title":"Diving Deeper: Leveraging the Chondrichthyan Fossil Record to Investigate Environmental, Ecological, and Biological Change","authors":"Sora L. Kim, Meghan A. Balk, Elizabeth C. Sibert, Lisa Whitenack","doi":"10.1146/annurev-earth-040523-010455","DOIUrl":"https://doi.org/10.1146/annurev-earth-040523-010455","url":null,"abstract":"The extensive chondrichthyan fossil record spans 400+ million years and has a global distribution. Paleontological studies provide a foundation of description and taxonomy to support deeper forays into ecology and evolution considering geographic, morphologic, and functional changes through time with nonanalog species and climate states. Although chondrichthyan teeth are most studied, analyses of dermal denticle metrics and soft tissue imprints are increasing. Recent methodological advances in morphology and geochemistry are elucidating fine-scale details, whereas large datasets and ecological modeling are broadening taxonomic, temporal, and geographic perspectives. The combination of ecological metrics and modeling with environmental reconstruction and climate simulations is opening new horizons to explore form and function, demographic dynamics, and food web structure in ancient marine ecosystems. Ultimately, the traits and taxa that endured or perished during the many catastrophic upheaval events in Earth's history contribute to conservation paleobiology, which is a much-needed perspective for extant chondrichthyans. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> The longevity and abundance of the chondrichthyan fossil record elucidates facets of ecological, evolutionary, and environmental histories. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Though lacking postcranial, mineralized skeletons, dental enameloid and dermal denticles exquisitely preserve morphology and geochemistry. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Technical advances in imaging, geochemistry, and modeling clarify the linkages between form and function with respect to physiology, diet, and environment. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Conservation efforts can benefit from the temporal and spatial perspective of chondrichthyan persistence through past global change events. </jats:list-item> </jats:list>","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"137 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142879911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coccoliths as Recorders of Paleoceanography and Paleoclimate over the Past 66 Million Years","authors":"Clara T. Bolton, Heather M. Stoll","doi":"10.1146/annurev-earth-040623-103211","DOIUrl":"https://doi.org/10.1146/annurev-earth-040623-103211","url":null,"abstract":"Coccolithophores are a major group of oceanic calcifying phytoplankton, and their calcite skeletal remains, termed calcareous nannofossils, are a major component of deep-sea sediments accumulating since the Jurassic. Coccolithophores play a role in both the biological pump and the carbonate pump, exporting organic and inorganic carbon, respectively, out of the surface ocean. This means that they are key responders to and recorders of ocean carbon cycle and climate changes over geological and shorter timescales, and studying these responses can help elucidate the uncertain fate of calcifying phytoplankton under projected climate change scenarios. Here, we review established and emerging approaches for reconstructing (<jats:italic>a</jats:italic>) mixed-layer ocean temperature, (<jats:italic>b</jats:italic>) marine productivity, and (<jats:italic>c</jats:italic>) aspects of the ocean carbon cycle, using calcareous nannofossils from deep-sea sediments. For each parameter, we discuss the different proxies that have been proposed, based on abundance or species composition, inorganic geochemistry, and/or coccolith morphology, and explore their applications and limitations in Cenozoic paleoceanography. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> Calcareous nannofossils can be used to reconstruct upper ocean conditions and changes over centennial to million-year timescales. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Key coccolith-based proxies for temperature, productivity, and the carbon cycle are reviewed. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Approaches based on assemblages, geochemistry, and morphology provide novel insights into the evolution and adaptation of coccolithophores and past climate. </jats:list-item> </jats:list>","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"27 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142879913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Minna de Honkoku: Citizen-Participation Transcription Project for Japanese Historical Documents","authors":"Yasuyuki Kano, Yuta Hashimoto","doi":"10.1146/annurev-earth-040523-120834","DOIUrl":"https://doi.org/10.1146/annurev-earth-040523-120834","url":null,"abstract":"Minna de Honkoku began as an online citizen science project to transcribe earthquake-related historical materials from the Earthquake Research Institute Library of the University of Tokyo. In Japan, almost all the documents are written in kuzushiji (old-style Japanese cursive script), a writing style used before ∼1900. Because the style of writing is different modern Japanese, transcription is necessary to use the historical documents as data for earthquake research. The workspace of Minna de Honkoku consists of a viewer of a document image and a vertical (Japanese-style) editor for transcription. Users can input transcribed text while viewing its image. The ranking of characters transcribed is displayed to keep users motivated. As of October 2024, more than 9,700 people were registered for the project, with the total number of characters transcribed at about 41 million. The text generated by Minna de Honkoku can be used for various academic research fields including seismology and can be used to enhance citizens’ disaster awareness. The paired kuzushiji characters and text data generated by Minna de Honkoku are beginning to be used as training data for artificial intelligence. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> Minna de Honkoku is an online citizen science project aimed at deciphering historical documents. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> The total number of participants is 9,700, and characters transcribed by Minna de Honkoku reaches 41 million. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Minna de Honkoku began as a project to transcribe earthquake-related historical materials. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> The text generated by Minna de Honkoku is used in seismology and various research fields and for building artificial intelligence–based kuzushiji recognition. </jats:list-item> </jats:list>","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"11 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Isotope Evolution of the Depleted Mantle","authors":"Jeffrey D. Vervoort, Anthony I.S. Kemp","doi":"10.1146/annurev-earth-031621-112052","DOIUrl":"https://doi.org/10.1146/annurev-earth-031621-112052","url":null,"abstract":"The depleted mantle reservoir is that part of Earth's mantle from which crust has been extracted, leaving the remaining mantle depleted in incompatible elements. Knowing how and when it formed is essential for understanding the chemical evolution of Earth, including formation of continental crust. The best-constrained Hf isotope data presented here indicate that the mantle does not become significantly depleted until as late as 700 million years after Earth's accretion. This onset of mantle depletion coincides with the first appearance of substantial volumes of continental crust in the geological record. These data compel a revision to the reference depleted mantle parameters used in Hf isotope studies of planetary evolution. This new reference line follows chondritic evolution until 3.8 Ga and then describes a linear trajectory to a present-day depleted mid-ocean ridge basalt source mantle composition (ε<jats:sub>Hf</jats:sub> = +18). We infer that stabilization of continental crust only occurred in earnest on Earth after 3.8 Ga. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> Hf isotopes show that Earth's mantle does not become significantly depleted until 700 million years after planetary accretion. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Most of Earth's oldest rocks formed from mantle sources that had radiogenic isotope compositions similar to those of chondritic meteorites. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Isotope evidence shows that Hadean (>4.0-billion-year-old) crust was not essential for formation of younger crust in Archean terranes. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Growth of Earth's continents only began in earnest after 3.8 Ga. </jats:list-item> </jats:list>","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"38 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Critical Minerals","authors":"Martin Reich, Adam C. Simon","doi":"10.1146/annurev-earth-040523-023316","DOIUrl":"https://doi.org/10.1146/annurev-earth-040523-023316","url":null,"abstract":"Critical minerals are essential for sustaining the supply chain necessary for the transition to a carbon-free energy source for society. Copper, nickel, cobalt, lithium, and rare earth elements are particularly in demand for batteries and high-performance magnets used in low-carbon technologies. Copper, predominantly sourced from porphyry deposits, is critical for electricity generation, storage, and distribution. Nickel, which comes from laterite and magmatic sulfide deposits, and cobalt, often a by-product of nickel or copper mining, are core components of batteries that power electric vehicles. Lithium, sourced from pegmatite deposits and continental brines, is another key battery component. Rare earth elements, primarily obtained from carbonatite- and regolith-hosted ion-adsorption deposits, have unique magnetic properties that are key for motor efficiency. Future demand for these elements is expected to increase significantly over the next decades, potentially outpacing expected mine production. Therefore, to ensure a successful energy transition, efforts must prioritize addressing substantial challenges in the supply of critical minerals, particularly the delays in exploring and mining new resources to meet growing demands. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> The energy transition relies on green technologies needing a secure, sustainable supply of critical minerals sourced from ore deposits worldwide. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Copper, nickel, cobalt, lithium, and rare earth elements are geologically restricted in occurrence, posing challenges for extraction and availability. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Future demand is expected to surge in the next decades, requiring unprecedented production rates to make the green energy transition viable. </jats:list-item> </jats:list>","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"49 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metal Isotopes in Mammalian Tissues","authors":"Jeremy E. Martin, Klervia Jaouen","doi":"10.1146/annurev-earth-040523-024549","DOIUrl":"https://doi.org/10.1146/annurev-earth-040523-024549","url":null,"abstract":"Ecologists rely on a wealth of data, including field observations and light stable isotopes, to infer dietary preferences and other ecological and physiological properties in living mammals. But inferring such important traits (e.g., trophic position, metabolism, pathologies) in extinct animals, including humans, can be challenging because biological processes rarely mirror morphology as preserved in the fossil record. For instance, dietary behavior does not necessarily reflect tooth morphology. As an additional challenge, some isotopic mammal tissues commonly used in modern ecology, such as collagen in bone or dentin or keratin from hair, hoof, or horn, do not generally preserve in fossil remains older than ∼200 kyr. In contrast, major constituents of bioapatite often retain their initial isotopic composition through fossilization processes. Recent analytical developments in mass spectrometry now allow, using small samples, for assessment of isotopic variability of major and trace elements such as calcium or zinc. Here, we review the application potentials of metal (nontraditional isotopes) for (paleo)ecological, (paleo)physiological, and (paleo)mobility inferences as applied to mammalian research. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> Mammals are key elements of modern ecosystems and possess a rich evolutionary history, yet inferences about their past ecologies and physiologies are challenging to retrieve using traditional geochemical toolkits. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Metal stable isotopes provide a novel and complementary approach to unveil paleoecological and paleophysiological characteristics of extinct mammal species. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Within a 20-year time frame, the core of metal isotopic data in mammalian research remains small compared to traditional isotopic systems (C, O, N), which is inviting for designing cost-effective instrumentation and increasing dissemination across scientific disciplines. </jats:list-item> </jats:list>","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"182 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142718178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geology: The Once and Future Crown Jewel of Science?","authors":"Walter Álvarez","doi":"10.1146/annurev-earth-041023-094929","DOIUrl":"https://doi.org/10.1146/annurev-earth-041023-094929","url":null,"abstract":"As a field geologist, I have been involved in the overwhelming excitement of three scientific revolutions—a mini revolution in structural geology, the impact-extinction revolution that freed geology from uncompromising uniformitarianism, and the plate tectonic revolution that turned the routine field of geology into one of the most exciting and essential sciences of the present time. I have also worked across several discipline boundaries, an activity I call scientific trespassing. My career has unfolded in such unexpected ways that, like anyone's life and like the history of our planet, it can only be seen as a most improbable journey. A focus on these three concepts and on the history of geology (a traditional name used here for all the Earth sciences) leads to the understanding that geology was once the crown jewel of sciences, and that after a century of necessary but routine geologic mapping, geology now needs to resume its crown jewel role because the understanding and care of our planet is becoming humanity's most urgent task.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"78 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cara Magnabosco, Fatima Husain, Madeline M. Paoletti, Chris Parsons, Jack G. Payette, Sarah L. Schwartz, Erik Tamre, Gregory P. Fournier
{"title":"Toward a Natural History of Microbial Life","authors":"Cara Magnabosco, Fatima Husain, Madeline M. Paoletti, Chris Parsons, Jack G. Payette, Sarah L. Schwartz, Erik Tamre, Gregory P. Fournier","doi":"10.1146/annurev-earth-031621-070542","DOIUrl":"https://doi.org/10.1146/annurev-earth-031621-070542","url":null,"abstract":"For most of Earth's history life was microbial, with archaeal and bacterial cells mediating biogeochemical cycles through their metabolisms and ecologies. This diversity was sufficient to maintain a habitable planet across dramatic environmental transitions during the Archean and Proterozoic Eons. However, our knowledge of the first 3 billion years of the biosphere pales in comparison to the rich narrative of complex life documented through the Phanerozoic geological record. In this review, we attempt to lay out a microbial natural history framework that highlights recent and ongoing research unifying microbiology, geochemistry, and traditional organismal evolutionary biology, and we propose six broadly applicable principles to aid in these endeavors. In this way, the evolutionary history of microbial life—once considered only a prelude to the much more storied history of complex metazoan life in the Phanerozoic—is finally coming into its own. ▪The outlines of microbial natural history are now starting to appear through the integration of genomic and geological records.▪Microorganisms drive Earth's biogeochemical cycles, and their natural history reflects a coevolution with the planet.▪Past environmental changes have induced microbial biotic transitions, marked by extinction, taxonomic shifts, and new metabolisms and ecologies.▪Microbial evolution can benefit from a historical perspective of processes and successions as established by macropaleontology.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"102 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}