Annual Review of Earth and Planetary Sciences最新文献

筛选
英文 中文
Evolution, Modification, and Deformation of Continental Lithosphere: Insights from the Eastern Margin of North America 大陆岩石圈的演化、改造和变形:北美东缘的启示
IF 14.9 1区 地球科学
Annual Review of Earth and Planetary Sciences Pub Date : 2024-02-21 DOI: 10.1146/annurev-earth-040522-115229
Maureen D. Long
{"title":"Evolution, Modification, and Deformation of Continental Lithosphere: Insights from the Eastern Margin of North America","authors":"Maureen D. Long","doi":"10.1146/annurev-earth-040522-115229","DOIUrl":"https://doi.org/10.1146/annurev-earth-040522-115229","url":null,"abstract":"Continental lithosphere is deformed, destroyed, or otherwise modified in several ways. Processes that modify the lithosphere include subduction, terrane accretion, orogenesis, rifting, volcanism/magmatism, lithospheric loss or delamination, small-scale or edge-driven convection, and plume-lithosphere interaction. The eastern North American margin (ENAM) provides an exceptional locale to study this broad suite of processes, having undergone multiple complete Wilson cycles of supercontinent formation and dispersal, along with ∼200 Ma of postrift evolution. Moreover, recent data collection efforts associated with EarthScope, GeoPRISMS, and related projects have led to a wealth of new observations in eastern North America. Here I highlight recent advances in our understanding of the structure of the continental lithosphere beneath eastern North America and the processes that have modified it through geologic time, with a focus on recent geophysical imaging that has illuminated the lithosphere in unprecedented detail. ▪ Eastern North America experienced a range of processes that deform, destroy, or modify continental lithosphere, providing new insights into how lithosphere evolves through time. ▪ Subduction and terrane accretion, continental rifting, and postrift evolution have all played a role in shaping lithospheric structure beneath eastern North America. ▪ Relict structures from past tectonic events are well-preserved in ENAM lithosphere; however, lithospheric modification that postdates the breakup of Pangea has also been significant.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"30 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139924296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cenozoic History of the Indonesian Gateway 印度尼西亚门户的新生代历史
IF 14.9 1区 地球科学
Annual Review of Earth and Planetary Sciences Pub Date : 2024-02-21 DOI: 10.1146/annurev-earth-040722-111322
Stephen J. Gallagher, Gerald Auer, Chris M. Brierley, Craig S. Fulthorpe, Robert Hall
{"title":"Cenozoic History of the Indonesian Gateway","authors":"Stephen J. Gallagher, Gerald Auer, Chris M. Brierley, Craig S. Fulthorpe, Robert Hall","doi":"10.1146/annurev-earth-040722-111322","DOIUrl":"https://doi.org/10.1146/annurev-earth-040722-111322","url":null,"abstract":"The tectonically complex Indonesian Gateway is part of the global thermohaline circulation and exerts a major control on climate. Waters from the Pacific flow through the Indonesian Archipelago into the Indian Ocean via the Indonesian Throughflow. Much progress has been made toward understanding the near-modern history of the Indonesian Gateway. However, the longer-term climate and ocean consequences of Australia's progressive collision with the Eurasian Plate that created it are less known. The gateway initiated ∼23 Ma, when Australia collided with Southeast Asia. By ∼10 Ma the gateway was sufficiently restricted to create a proto–warm pool. During the Pliocene it alternated between more or less restricted conditions, until modern oceanic conditions were established by 2.7 Ma. Despite its tectonic complexity, climate modeling and Indian and Pacific scientific ocean drilling research continue to yield insights into the gateway's deep history. ▪ The Indonesian Gateway is a key branch of global thermohaline oceanic circulation, exerting a major control on Earth's climate over the last the 25 Myr. ▪ We find that a complex interplay of tectonics and sea level has controlled Indonesian Gateway restriction since 12 Myr, resulting in La Niña– and El Niño–like states in the equatorial Pacific ▪ Long term Indonesian Gateway history is best determined from ocean drilling cores on the Indian and Pacific sides of the Indonesian Gateway, as records from within it are typically disrupted by tectonics. ▪ Model simulations show the global impact of the Indonesian Gateway. Further modeling with ocean drilling/tectonic research will enhance our understanding of Cenozoic Indonesian Gateway history.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"2020 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139924348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrotectonics of Grand Canyon Groundwater 大峡谷地下水的水文构造
IF 14.9 1区 地球科学
Annual Review of Earth and Planetary Sciences Pub Date : 2024-02-21 DOI: 10.1146/annurev-earth-080723-083513
L.J. Crossey, K.E. Karlstrom, B. Curry, C. McGibbon, C. Reed, J. Wilgus, C.J. Whyte, T. Darrah
{"title":"Hydrotectonics of Grand Canyon Groundwater","authors":"L.J. Crossey, K.E. Karlstrom, B. Curry, C. McGibbon, C. Reed, J. Wilgus, C.J. Whyte, T. Darrah","doi":"10.1146/annurev-earth-080723-083513","DOIUrl":"https://doi.org/10.1146/annurev-earth-080723-083513","url":null,"abstract":"The Grand Canyon provides a deeply dissected view of the aquifers of the Colorado Plateau and its public and tribal lands. Stacked sandstone and karst aquifers are vertically connected by a network of faults and breccia pipes creating a complex groundwater network. Hydrochemical variations define structurally controlled groundwater sub-basins, each with main discharging springs. North Rim (N-Rim), South Rim (S-Rim), and far-west springs have different stable isotope fingerprints, reflecting different mean recharge elevations. Variation within each region reflects proportions of fast/slow aquifer pathways. Often considered perched, the upper Coconino (C) aquifer has a similar compositional range as the regional Redwall-Muav (R-M) karst aquifer, indicating connectivity. Natural and anthropogenic tracers show that recharge can travel 2 km vertically and tens of kilometers laterally in days to months via fracture conduits to mix with older karst baseflow. Six decades of piping N-Rim water to S-Rim Village and infiltration of effluent along the Bright Angel fault have sustained S-Rim groundwaters and likely induced S-Rim microseismicity. Sustainable groundwater management and uranium mining threats require better monitoring and application of hydrotectonic concepts. ▪ Hydrotectonic concepts include distinct structural sub-basins, fault fast conduits, confined aquifers, karst aquifers, upwelling geothermal fluids, and induced seismicity. ▪ N-Rim, S-Rim, and far-west springs have different stable isotope fingerprints reflecting different mean recharge elevations and residence times. ▪ The upper C and lower R-M aquifers have overlapping stable isotope fingerprints in a given region, indicating vertical connectively between aquifers. ▪ S-Rim springs and groundwater wells are being sustained by ∼60 years of piping of N-Rim water to S-Rim, also inducing seismicity.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"113 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139924080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Origin of Phobos and Deimos Awaiting Direct Exploration 等待直接探索的火卫一和土卫二的起源
IF 14.9 1区 地球科学
Annual Review of Earth and Planetary Sciences Pub Date : 2024-02-16 DOI: 10.1146/annurev-earth-040522-110615
Kiyoshi Kuramoto
{"title":"Origin of Phobos and Deimos Awaiting Direct Exploration","authors":"Kiyoshi Kuramoto","doi":"10.1146/annurev-earth-040522-110615","DOIUrl":"https://doi.org/10.1146/annurev-earth-040522-110615","url":null,"abstract":"Two major hypotheses have been proposed for the origin of the Martian moons Phobos and Deimos: the in situ formation theory, supported by the fact that they have circular orbits nearly parallel to the Martian equator, and the asteroid capture theory, supported by the similarity of their reflectance spectra to those of carbonaceous asteroids. Regarding the in situ formation theory, recent theoretical studies have focused on the huge impact scenario, which proposes that debris ejected into orbits during the formation of a giant impact basin on Mars accumulated to form the Martian moons. On the other hand, gas drag from a Martian gas envelope composed of gravitationally attracted solar nebula gas has been proposed as a mechanism for trapping the approaching asteroidal objects in areocentric orbits. In particular, an object entering a temporarily captured orbit in the Martian gravitational sphere would easily evolve into a fully captured moon with a near-equatorial orbit under realistic gas densities. The upcoming Phobos sample return mission is expected to elucidate the origin of both moons, with implications for material transport in the early Solar System and the early evolution of Mars. ▪ The origin of Mars’ small moons, Phobos and Deimos, has long been an open question. ▪ The leading hypotheses are asteroid capture, inferred from their appearance like primitive asteroids, and giant impact, implied by the regularity of their orbits. ▪ The origin of Phobos will be precisely determined by a sample return mission to be conducted in the late 2020s to early 2030s. ▪ Determining the origin of the Martian moons will provide clues to clarifying how the parent planet Mars formed and came to have a habitable surface environment.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"50 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140115364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Hidden Hydrogeosphere: The Contribution of Deep Groundwater to the Planetary Water Cycle 隐藏的水文地质圈:深层地下水对行星水循环的贡献
IF 14.9 1区 地球科学
Annual Review of Earth and Planetary Sciences Pub Date : 2024-01-25 DOI: 10.1146/annurev-earth-040722-102252
Barbara Sherwood Lollar, Oliver Warr, Peter M. Higgins
{"title":"The Hidden Hydrogeosphere: The Contribution of Deep Groundwater to the Planetary Water Cycle","authors":"Barbara Sherwood Lollar, Oliver Warr, Peter M. Higgins","doi":"10.1146/annurev-earth-040722-102252","DOIUrl":"https://doi.org/10.1146/annurev-earth-040722-102252","url":null,"abstract":"The canonical water cycle assumes that all water entering the subsurface to form groundwater eventually reenters the surface water cycle by discharge to lakes, streams, and oceans. Recent discoveries in groundwater dating have challenged that understanding. Here we introduce a new conceptual framework that includes the large volume of water that is estimated to account for 30–46% of the planet's groundwater but that is not yet incorporated in the traditional water cycle. This immense hidden hydrogeosphere has been overlooked to date largely because it is stored deeper in the crust, on long timescales ranging from tens of thousands to more than one billion years. Here we demonstrate why understanding of this deep, old groundwater is critical to society's energy, resource, and climate challenges as the deep hydrogeosphere is an important target for exploration for new resources of helium, hydrogen, and other elements critical to the green energy transition; is under investigation for geologic repositories for nuclear waste and for carbon sequestration; and is the biome for a deep subsurface biosphere estimated to account for a significant proportion of Earth's biomass. ▪ We provide a new conceptual framework for the hidden hydrogeosphere, the 30–46% of groundwater previously unrecognized in canonical water cycles. ▪ Geochemico-statistical modeling groundwater age distributions allows deconvolution of timing, rates, and magnitudes of key crustal processes. ▪ Understanding and modeling this deep, old groundwater is critical to addressing society's energy, resource, and climate challenges.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"304 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139565652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Late Cenozoic Faunal and Ecological Change in Africa 非洲晚新生代动物和生态变化
IF 14.9 1区 地球科学
Annual Review of Earth and Planetary Sciences Pub Date : 2024-01-25 DOI: 10.1146/annurev-earth-031621-114105
J. Tyler Faith, John Rowan, Andrew Du
{"title":"Late Cenozoic Faunal and Ecological Change in Africa","authors":"J. Tyler Faith, John Rowan, Andrew Du","doi":"10.1146/annurev-earth-031621-114105","DOIUrl":"https://doi.org/10.1146/annurev-earth-031621-114105","url":null,"abstract":"Africa's fossil record of late Cenozoic mammals documents considerable ecological and evolutionary changes through time. Here, we synthesize those changes in the context of the mechanisms proposed to account for them, including bottom-up (e.g., climate change) and top-down (e.g., hominin impacts) processes. In doing so, we ( a) examine how the incompleteness of the fossil record and the varied spatiotemporal scales of the evidence complicate efforts to establish cause-effect relationships; ( b) evaluate hypothesized drivers of long-term ecological and evolutionary change, highlighting key unknowns; and ( c) synthesize major taxonomic and functional trends through time (e.g., downsizing of faunal communities) considering the proposed drivers. Throughout our review, we point to unresolved questions and highlight research avenues that have potential to inform on the processes that have shaped the history of what are today the most diverse remaining large mammal communities on Earth.▪ The study of late Cenozoic African mammal communities is intertwined with questions about the context, causes, and consequences of hominin evolution. ▪ The fossil record documents major functional (e.g., loss of megaherbivores) and taxonomic (e.g., rise of the Bovidae) changes over the past ∼7 Myr. ▪ Complexities inherent to the fossil record have made it difficult to identify the processes that drove ecological and evolutionary changes. ▪ Unanswered questions about the drivers of faunal change and the functioning of past ecosystems represent promising future research directions.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"166 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139565604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Dislocation Climb as an Important Deformation Mechanism for Planetary Interiors 论位错攀升是行星内部的重要变形机制
IF 14.9 1区 地球科学
Annual Review of Earth and Planetary Sciences Pub Date : 2024-01-18 DOI: 10.1146/annurev-earth-031621-063108
Philippe Carrez, Alexandre Mussi, Patrick Cordier
{"title":"On Dislocation Climb as an Important Deformation Mechanism for Planetary Interiors","authors":"Philippe Carrez, Alexandre Mussi, Patrick Cordier","doi":"10.1146/annurev-earth-031621-063108","DOIUrl":"https://doi.org/10.1146/annurev-earth-031621-063108","url":null,"abstract":"▪ An understanding of the rheological behavior of the solid Earth is fundamental to provide a quantitative description of most geological and geophysical phenomena. The continuum mechanics approach to describing large-scale phenomena needs to be informed by a description of the mechanisms operating at the atomic scale. These involve crystal defects, mainly vacancies and dislocations. This often leads to a binary view of creep reduced to diffusion creep or dislocation creep. However, the interaction between these two types of defects leading to dislocation climb plays an important role, and may even be the main one, in the high-temperature, low strain rate creep mechanisms of interest to the Earth sciences. Here we review the fundamentals of dislocation climb, highlighting the specific problems of minerals. We discuss the importance of computer simulations, informed by experiments, for accurately modeling climb. We show how dislocation climb increasingly appears as a deformation mechanism in its own right. We review the contribution of this mechanism to mineral deformation, particularly in Earth's mantle. Finally, we discuss progress and challenges, and we outline future work directions. Dislocations can be sources or sinks of vacancies, resulting in a displacement out of the glide plane: climb. ▪ Dislocation climb can be a recovery mechanism during dislocation creep but also a strain-producing mechanism. ▪ The slow natural strain rates promote the contribution of climb, which is controlled by diffusion. ▪ In planetary interiors where dislocation glide can be inhibited by pressure, dislocation climb may be the only active mechanism.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"12 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139494788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon Cycle–Climate Feedbacks in the Post-Paris World 后巴黎世界的碳循环-气候反馈作用
IF 14.9 1区 地球科学
Annual Review of Earth and Planetary Sciences Pub Date : 2024-01-18 DOI: 10.1146/annurev-earth-031621-081700
David S. Schimel, Dustin Carroll
{"title":"Carbon Cycle–Climate Feedbacks in the Post-Paris World","authors":"David S. Schimel, Dustin Carroll","doi":"10.1146/annurev-earth-031621-081700","DOIUrl":"https://doi.org/10.1146/annurev-earth-031621-081700","url":null,"abstract":"The Paris Agreement calls for emissions reductions to limit climate change, but how will the carbon cycle change if it is successful? The land and oceans currently absorb roughly half of anthropogenic emissions, but this fraction will decline in the future. The amount of carbon that can be released before climate is mitigated depends on the amount of carbon the ocean and terrestrial ecosystems can absorb. Policy is based on model projections, but observations and theory suggest that climate effects emerging in today's climate will increase and carbon cycle tipping points may be crossed. Warming temperatures, drought, and a slowing growth rate of CO<jats:sub>2</jats:sub> itself will reduce land and ocean sinks and create new sources, making carbon sequestration in forests, soils, and other land and aquatic vegetation more difficult. Observations, data-assimilative models, and prediction systems are needed for managing ongoing long-term changes to land and ocean systems after achieving net-zero emissions. ▪ International agreements call for stabilizing climate at 1.5° above preindustrial, while the world is already seeing damaging extremes below that. ▪ If climate is stabilized near the 1.5° target, the driving force for most sinks will slow, while feedbacks from the warmer climate will continue to cause sources. ▪ Once emissions are reduced to net zero, carbon cycle-climate feedbacks will require observations to support ongoing active management to maintain storage.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"3 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139494769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling Past Hothouse Climates as a Means for Assessing Earth System Models and Improving the Understanding of Warm Climates 模拟过去的 "暖房气候",以此评估地球系统模型并加深对暖气候的理解
IF 14.9 1区 地球科学
Annual Review of Earth and Planetary Sciences Pub Date : 2024-01-18 DOI: 10.1146/annurev-earth-032320-100333
Jiang Zhu, Christopher J. Poulsen, Bette L. Otto-Bliesner
{"title":"Modeling Past Hothouse Climates as a Means for Assessing Earth System Models and Improving the Understanding of Warm Climates","authors":"Jiang Zhu, Christopher J. Poulsen, Bette L. Otto-Bliesner","doi":"10.1146/annurev-earth-032320-100333","DOIUrl":"https://doi.org/10.1146/annurev-earth-032320-100333","url":null,"abstract":"Simulating the warmth and equability of past hothouse climates has been a challenge since the inception of paleoclimate modeling. The newest generation of Earth system models (ESMs) has shown substantial improvements in the ability to simulate the early Eocene global mean surface temperature (GMST) and equator-to-pole gradient. Results using the Community Earth System Model suggest that parameterizations of atmospheric radiation, convection, and clouds largely determine the Eocene GMST and are responsible for improvements in the new ESMs, but they have less direct influence on the equator-to-pole temperature gradient. ESMs still have difficulty simulating some regional and seasonal temperatures, although improved data reconstructions of chronology, spatial coverage, and seasonal resolution are needed for more robust model assessment. Looking forward, key processes including radiation and clouds need to be benchmarked and improved using more accurate models of limited domain/physics. Earth system processes need to be better explored, leveraging the increasing ESM resolution and complexity. ▪ Earth system models (ESMs) are now able to simulate the large-scale features of the early Eocene. ▪ Remaining model-data discrepancies exist at regional and seasonal scales and require improvements in both proxy data and ESMs. ▪ A hierarchical modeling approach is needed to ensure relevant physical processes are parameterized reasonably well in ESMs. ▪ Future work is needed to leverage the continuously increasing resolution and complexity of ESMs.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"49 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139494784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sublithospheric Diamonds: Plate Tectonics from Earth's Deepest Mantle Samples 岩石圈下的钻石:从地球最深的地幔样本看板块构造
IF 14.9 1区 地球科学
Annual Review of Earth and Planetary Sciences Pub Date : 2024-01-18 DOI: 10.1146/annurev-earth-032320-105438
Steven B. Shirey, D. Graham Pearson, Thomas Stachel, Michael J. Walter
{"title":"Sublithospheric Diamonds: Plate Tectonics from Earth's Deepest Mantle Samples","authors":"Steven B. Shirey, D. Graham Pearson, Thomas Stachel, Michael J. Walter","doi":"10.1146/annurev-earth-032320-105438","DOIUrl":"https://doi.org/10.1146/annurev-earth-032320-105438","url":null,"abstract":"Sublithospheric diamonds and the inclusions they may carry crystallize in the asthenosphere, transition zone, or uppermost lower mantle (from 300 to ∼800 km), and are the deepest minerals so far recognized to form by plate tectonics. These diamonds are distinctive in their deformation features, low nitrogen content, and inclusions of these major mantle minerals: majoritic garnet, clinopyroxene, ringwoodite, CaSi perovskite, ferropericlase, and bridgmanite or their retrograde equivalents. The stable isotopic compositions of elements within these diamonds (δ<jats:sup>11</jats:sup>B, δ<jats:sup>13</jats:sup>C, δ<jats:sup>15</jats:sup>N) and their inclusions (δ<jats:sup>18</jats:sup>O, δ<jats:sup>56</jats:sup>Fe) are typically well outside normal mantle ranges, showing that these elements were either organic (C) or modified by seawater alteration (B, O, Fe) at relatively low temperatures. Metamorphic minerals in cold slabs are effective hosts that transport C as CO<jats:sub>3</jats:sub> and H as H<jats:sub>2</jats:sub>O, OH, or CH<jats:sub>4</jats:sub> below the island arc and mantle wedge. Warming of the slab generates carbonatitic melts, supercritical aqueous fluids, or metallic liquids, forming three types of sublithospheric diamonds. Diamond crystallization occurs by movement and reduction of mobile fluids as they pass through host mantle via fractures—a process that creates chemical heterogeneity and may promote deep focus earthquakes. Geobarometry of majoritic garnet inclusions and diamond ages suggest upward transport, perhaps to the base of mantle lithosphere. From there, diamonds are carried to Earth's surface by eruptions of kimberlite magma. Mineral assemblages in sublithospheric diamonds directly trace Earth's deep volatile cycle, demonstrating how the hydrosphere of a rocky planet can connect to its solid interior. ▪ Sublithospheric diamonds from the deep upper mantle, transition zone, and lower mantle host Earth's deepest obtainable mineral samples. ▪ Low-temperature seawater alteration of the ocean floor captures organic and inorganic carbon at the surface eventually to become some of the most precious gem diamonds. ▪ Subduction transports fluids in metamorphic minerals to great depth. Fluids released by slab heating migrate, react with host mantle to induce diamond crystallization, and may trigger earthquakes. ▪ Sublithospheric diamonds are powerful tracers of subduction—a plate tectonic process that deeply recycles part of Earth's planetary volatile budget.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"57 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139494756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信