模拟过去的 "暖房气候",以此评估地球系统模型并加深对暖气候的理解

IF 11.3 1区 地球科学 Q1 ASTRONOMY & ASTROPHYSICS
Jiang Zhu, Christopher J. Poulsen, Bette L. Otto-Bliesner
{"title":"模拟过去的 \"暖房气候\",以此评估地球系统模型并加深对暖气候的理解","authors":"Jiang Zhu, Christopher J. Poulsen, Bette L. Otto-Bliesner","doi":"10.1146/annurev-earth-032320-100333","DOIUrl":null,"url":null,"abstract":"Simulating the warmth and equability of past hothouse climates has been a challenge since the inception of paleoclimate modeling. The newest generation of Earth system models (ESMs) has shown substantial improvements in the ability to simulate the early Eocene global mean surface temperature (GMST) and equator-to-pole gradient. Results using the Community Earth System Model suggest that parameterizations of atmospheric radiation, convection, and clouds largely determine the Eocene GMST and are responsible for improvements in the new ESMs, but they have less direct influence on the equator-to-pole temperature gradient. ESMs still have difficulty simulating some regional and seasonal temperatures, although improved data reconstructions of chronology, spatial coverage, and seasonal resolution are needed for more robust model assessment. Looking forward, key processes including radiation and clouds need to be benchmarked and improved using more accurate models of limited domain/physics. Earth system processes need to be better explored, leveraging the increasing ESM resolution and complexity. ▪ Earth system models (ESMs) are now able to simulate the large-scale features of the early Eocene. ▪ Remaining model-data discrepancies exist at regional and seasonal scales and require improvements in both proxy data and ESMs. ▪ A hierarchical modeling approach is needed to ensure relevant physical processes are parameterized reasonably well in ESMs. ▪ Future work is needed to leverage the continuously increasing resolution and complexity of ESMs.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"49 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Past Hothouse Climates as a Means for Assessing Earth System Models and Improving the Understanding of Warm Climates\",\"authors\":\"Jiang Zhu, Christopher J. Poulsen, Bette L. Otto-Bliesner\",\"doi\":\"10.1146/annurev-earth-032320-100333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulating the warmth and equability of past hothouse climates has been a challenge since the inception of paleoclimate modeling. The newest generation of Earth system models (ESMs) has shown substantial improvements in the ability to simulate the early Eocene global mean surface temperature (GMST) and equator-to-pole gradient. Results using the Community Earth System Model suggest that parameterizations of atmospheric radiation, convection, and clouds largely determine the Eocene GMST and are responsible for improvements in the new ESMs, but they have less direct influence on the equator-to-pole temperature gradient. ESMs still have difficulty simulating some regional and seasonal temperatures, although improved data reconstructions of chronology, spatial coverage, and seasonal resolution are needed for more robust model assessment. Looking forward, key processes including radiation and clouds need to be benchmarked and improved using more accurate models of limited domain/physics. Earth system processes need to be better explored, leveraging the increasing ESM resolution and complexity. ▪ Earth system models (ESMs) are now able to simulate the large-scale features of the early Eocene. ▪ Remaining model-data discrepancies exist at regional and seasonal scales and require improvements in both proxy data and ESMs. ▪ A hierarchical modeling approach is needed to ensure relevant physical processes are parameterized reasonably well in ESMs. ▪ Future work is needed to leverage the continuously increasing resolution and complexity of ESMs.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":8034,\"journal\":{\"name\":\"Annual Review of Earth and Planetary Sciences\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Earth and Planetary Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-earth-032320-100333\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Earth and Planetary Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-earth-032320-100333","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

自古气候建模开始以来,模拟过去温室气候的温暖和均衡一直是一个挑战。最新一代地球系统模式(ESM)在模拟始新世早期全球平均地表温度(GMST)和赤道到极地梯度的能力方面有了显著提高。利用共同体地球系统模式得出的结果表明,大气辐射、对流和云的参数化在很大程度上决定了始新世全球平均表面温度,也是新的 ESMs 得以改进的原因,但它们对赤道到极地温度梯度的直接影响较小。尽管需要改进年代学、空间覆盖和季节分辨率的数据重建,以便对模型进行更有力的评估,但 ESM 仍然难以模拟某些区域和季节温度。展望未来,包括辐射和云在内的关键过程需要使用更精确的有限领域/物理模型进行基准测试和改进。需要利用不断提高的 ESM 分辨率和复杂性,更好地探索地球系统过程。地球系统模式(ESM)现在能够模拟始新世早期的大尺度特征。在区域和季节尺度上,模型与数据之间仍存在差异,需要改进代用数据和 ESM。需要采用分层建模方法,以确保相关物理过程在 ESM 中得到合理参数化。地球与行星科学年度评论》第 52 卷的最终在线出版日期预计为 2024 年 5 月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Past Hothouse Climates as a Means for Assessing Earth System Models and Improving the Understanding of Warm Climates
Simulating the warmth and equability of past hothouse climates has been a challenge since the inception of paleoclimate modeling. The newest generation of Earth system models (ESMs) has shown substantial improvements in the ability to simulate the early Eocene global mean surface temperature (GMST) and equator-to-pole gradient. Results using the Community Earth System Model suggest that parameterizations of atmospheric radiation, convection, and clouds largely determine the Eocene GMST and are responsible for improvements in the new ESMs, but they have less direct influence on the equator-to-pole temperature gradient. ESMs still have difficulty simulating some regional and seasonal temperatures, although improved data reconstructions of chronology, spatial coverage, and seasonal resolution are needed for more robust model assessment. Looking forward, key processes including radiation and clouds need to be benchmarked and improved using more accurate models of limited domain/physics. Earth system processes need to be better explored, leveraging the increasing ESM resolution and complexity. ▪ Earth system models (ESMs) are now able to simulate the large-scale features of the early Eocene. ▪ Remaining model-data discrepancies exist at regional and seasonal scales and require improvements in both proxy data and ESMs. ▪ A hierarchical modeling approach is needed to ensure relevant physical processes are parameterized reasonably well in ESMs. ▪ Future work is needed to leverage the continuously increasing resolution and complexity of ESMs.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Earth and Planetary Sciences
Annual Review of Earth and Planetary Sciences 地学天文-地球科学综合
CiteScore
25.10
自引率
0.00%
发文量
25
期刊介绍: Since its establishment in 1973, the Annual Review of Earth and Planetary Sciences has been dedicated to providing comprehensive coverage of advancements in the field. This esteemed publication examines various aspects of earth and planetary sciences, encompassing climate, environment, geological hazards, planet formation, and the evolution of life. To ensure wider accessibility, the latest volume of the journal has transitioned from a gated model to open access through the Subscribe to Open program by Annual Reviews. Consequently, all articles published in this volume are now available under the Creative Commons Attribution (CC BY) license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信