{"title":"Correction note: Higher order elicitability and Osband’s principle","authors":"Tobias Fissler, Johanna F. Ziegel","doi":"10.1214/20-AOS2014","DOIUrl":"https://doi.org/10.1214/20-AOS2014","url":null,"abstract":"","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"49 1","pages":"614-614"},"PeriodicalIF":4.5,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45392545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Convergence of covariance and spectral density estimates for high-dimensional locally stationary processes","authors":"Danna Zhang, W. Wu","doi":"10.1214/20-AOS1954","DOIUrl":"https://doi.org/10.1214/20-AOS1954","url":null,"abstract":"Covariances and spectral density functions play a fundamental role in the theory of time series. There is a well-developed asymptotic theory for their estimates for low-dimensional stationary processes. For high-dimensional nonstationary processes, however, many important problems on their asymptotic behaviors are still unanswered. This paper presents a systematic asymptotic theory for the estimates of time-varying second-order statistics for a general class of high-dimensional locally stationary processes. Using the framework of functional dependence measure, we derive convergence rates of the estimates which depend on the sample size $T$, the dimension $p$, the moment condition and the dependence of the underlying processes.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"49 1","pages":"233-254"},"PeriodicalIF":4.5,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43249786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annals of StatisticsPub Date : 2021-02-01Epub Date: 2021-01-29DOI: 10.1214/20-aos1951
Yinqiu He, Gongjun Xu, Chong Wu, Wei Pan
{"title":"ASYMPTOTICALLY INDEPENDENT U-STATISTICS IN HIGH-DIMENSIONAL TESTING.","authors":"Yinqiu He, Gongjun Xu, Chong Wu, Wei Pan","doi":"10.1214/20-aos1951","DOIUrl":"10.1214/20-aos1951","url":null,"abstract":"<p><p>Many high-dimensional hypothesis tests aim to globally examine marginal or low-dimensional features of a high-dimensional joint distribution, such as testing of mean vectors, covariance matrices and regression coefficients. This paper constructs a family of U-statistics as unbiased estimators of the <i>ℓ</i> <sub><i>p</i></sub> -norms of those features. We show that under the null hypothesis, the U-statistics of different finite orders are asymptotically independent and normally distributed. Moreover, they are also asymptotically independent with the maximum-type test statistic, whose limiting distribution is an extreme value distribution. Based on the asymptotic independence property, we propose an adaptive testing procedure which combines <i>p</i>-values computed from the U-statistics of different orders. We further establish power analysis results and show that the proposed adaptive procedure maintains high power against various alternatives.</p>","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"49 1","pages":"154-181"},"PeriodicalIF":3.2,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8634550/pdf/nihms-1737820.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39939694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sharp minimax distribution estimation for current status censoring with or without missing","authors":"S. Efromovich","doi":"10.1214/20-AOS1970","DOIUrl":"https://doi.org/10.1214/20-AOS1970","url":null,"abstract":"Nonparametric estimation of the cumulative distribution function and the probability density of a lifetime X modified by a current status censoring (CSC), including cases of right and left missing data, is a classical ill-posed problem with biased data. The biased nature of CSC data may preclude us from consistent estimation unless the biasing function is known or may be estimated, and its ill-posed nature slows down rates of convergence. Under a traditionally studied CSC, we observe a sample from $(Z,Delta )$ where a continuous monitoring time $Z$ is independent of $X$, $Delta :=I(Xleq Z)$ is the status, and the bias of observations is created by the density of $Z$ which is estimable. In presence of right or left missing, we observe corresponding samples from $(Delta Z,Delta )$ or $((1-Delta )Z,Delta )$; the data are again biased but now the density of $Z$ cannot be estimated from the data. As a result, to solve the estimation problem, either the density of $Z$ must be known (like in a controlled study) or an extra cross-sectional sampling of $Z$, which is typically simpler than an underlying CSC study, be conducted. The main aim of the paper is to develop for this biased and ill-posed problem the theory of efficient (sharp-minimax) estimation which is inspired by known results for the case of directly observed $X$. Among interesting aspects of the developed theory: (i) While sharp-minimax analysis of missing CSC may follow the classical Pinsker’s methodology, analysis of CSC requires a more complicated estimation procedure based on a special smoothing in both frequency and time domains; (ii) Efficient estimation requires solving an old-standing problem of approximating aperiodic Sobolev functions; (iii) If smoothness of the cdf of $X$ is known, then its rate-minimax estimation is possible even if the density of $Z$ is rougher. Real and simulated examples, as well as extensions of the core models to dependent $X$ and Z and case-control CSC, are presented.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"49 1","pages":"568-589"},"PeriodicalIF":4.5,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49238602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inference for conditional value-at-risk of a predictive regression","authors":"Yi He, Yanxi Hou, L. Peng, Haipeng Shen","doi":"10.1214/19-aos1937","DOIUrl":"https://doi.org/10.1214/19-aos1937","url":null,"abstract":"Conditional value-at-risk is a popular risk measure in risk management. We study the inference problem of conditional value-at-risk under a linear predictive regression model. We derive the asymptotic distribution of the least squares estimator for the conditional value-at-risk. Our results relax the model assumptions made in Chun et al. (2012) and correct their mistake in the asymptotic variance expression. We show that the asymptotic variance depends on the quantile density function of the unobserved error and whether the model has a predictor with infinite variance, which makes it challenging to actually quantify the uncertainty of the conditional risk measure. To make the inference feasible, we then propose a smooth empirical likelihood based method for constructing a confidence interval for the conditional value-at-risk based on either independent errors or GARCH errors. Our approach not only bypasses the challenge of directly estimating the asymptotic variance but also does not need to know whether there exists an infinite variance predictor in the predictive model. Furthermore, we apply the same idea to the quantile regression method, which allows infinite variance predictors and generalizes the parameter estimation in Whang (2006) to conditional value-at-risk in the supplementary material. We demonstrate the finite sample performance of the derived confidence intervals through numerical studies before applying them to real data.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"48 1","pages":"3442-3464"},"PeriodicalIF":4.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48812460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonparametric drift estimation for i.i.d. paths of stochastic differential equations","authors":"F. Comte, V. Genon-Catalot","doi":"10.1214/19-aos1933","DOIUrl":"https://doi.org/10.1214/19-aos1933","url":null,"abstract":"By Fabienne Comte∗, Valentine Genon-Catalot∗ Université de Paris, MAP5, CNRS, F-75006, France ∗ We considerN independent stochastic processes (Xi(t), t ∈ [0, T ]), i = 1, . . . , N , de ned by a one-dimensional stochastic di erential equation which are continuously observed throughout a time interval [0, T ] where T is xed. We study nonparametric estimation of the drift function on a given subset A of R. Projection estimators are de ned on nite dimensional subsets of L(A, dx). We stress that the set A may be compact or not and the di usion coe cient may be bounded or not. A data-driven procedure to select the dimension of the projection space is proposed where the dimension is chosen within a random collection of models. Upper bounds of risks are obtained, the assumptions are discussed and simulation experiments are reported.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"48 1","pages":"3336-3365"},"PeriodicalIF":4.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48826148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Irreducibility and geometric ergodicity of Hamiltonian Monte Carlo","authors":"Alain Durmus, É. Moulines, E. Saksman","doi":"10.1214/19-aos1941","DOIUrl":"https://doi.org/10.1214/19-aos1941","url":null,"abstract":"Hamiltonian Monte Carlo (HMC) is currently one of the most popular Markov Chain Monte Carlo algorithms to sample smooth distributions over continuous state space. This paper discusses the irreducibility and geometric ergodicity of the HMC algorithm. We consider cases where the number of steps of the StörmerVerlet integrator is either fixed or random. Under mild conditions on the potential U associated with target distribution π, we first show that the Markov kernel associated to the HMC algorithm is irreducible and positive recurrent. Under more stringent conditions, we then establish that the Markov kernel is Harris recurrent. We provide verifiable conditions on U under which the HMC sampler is geometrically ergodic. Finally, we illustrate our results on several examples.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"48 1","pages":"3545-3564"},"PeriodicalIF":4.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44346149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fréchet change-point detection","authors":"Paromita Dubey, H. Müller","doi":"10.1214/19-AOS1930","DOIUrl":"https://doi.org/10.1214/19-AOS1930","url":null,"abstract":"","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"48 1","pages":"3312-3335"},"PeriodicalIF":4.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44332233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of the extent of corroboration of an elaborate theory of a causal hypothesis using partial conjunctions of evidence factors","authors":"B. Karmakar, Dylan S. Small","doi":"10.1214/19-aos1929","DOIUrl":"https://doi.org/10.1214/19-aos1929","url":null,"abstract":"An elaborate theory of predictions of a causal hypothesis consists of several falsifiable statements derived from the causal hypothesis. Statistical tests for the various pieces of the elaborate theory help to clarify how much the causal hypothesis is corroborated. In practice, the degree of corroboration of the causal hypothesis has been assessed by a verbal description of which of the several tests provides evidence for which of the several predictions. This verbal approach can miss quantitative patterns. In this paper, we develop a quantitative approach. We first decompose these various tests of the predictions into independent factors with different sources of potential biases. Support for the causal hypothesis is enhanced when many of these evidence factors support the predictions. A sensitivity analysis is used to assess the potential bias that could make the finding of the tests spurious. Along with this multi-parameter sensitivity analysis, we consider the partial conjunctions of the tests. These partial conjunctions quantify the evidence supporting various fractions of the collection of predictions. A partial conjunction test involves combining tests of the components in the partial conjunction. We find the asymptotically optimal combination of tests in the context of a sensitivity analysis. Our analysis of an elaborate theory of a causal hypothesis controls for the familywise error rate.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"48 1","pages":"3283-3311"},"PeriodicalIF":4.5,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43683533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annals of StatisticsPub Date : 2020-10-01Epub Date: 2020-09-19DOI: 10.1214/19-aos1900
Ethan X Fang, Yang Ning, Runze Li
{"title":"TEST OF SIGNIFICANCE FOR HIGH-DIMENSIONAL LONGITUDINAL DATA.","authors":"Ethan X Fang, Yang Ning, Runze Li","doi":"10.1214/19-aos1900","DOIUrl":"10.1214/19-aos1900","url":null,"abstract":"<p><p>This paper concerns statistical inference for longitudinal data with ultrahigh dimensional covariates. We first study the problem of constructing confidence intervals and hypothesis tests for a low dimensional parameter of interest. The major challenge is how to construct a powerful test statistic in the presence of high-dimensional nuisance parameters and sophisticated within-subject correlation of longitudinal data. To deal with the challenge, we propose a new quadratic decorrelated inference function approach, which simultaneously removes the impact of nuisance parameters and incorporates the correlation to enhance the efficiency of the estimation procedure. When the parameter of interest is of fixed dimension, we prove that the proposed estimator is asymptotically normal and attains the semiparametric information bound, based on which we can construct an optimal Wald test statistic. We further extend this result and establish the limiting distribution of the estimator under the setting with the dimension of the parameter of interest growing with the sample size at a polynomial rate. Finally, we study how to control the false discovery rate (FDR) when a vector of high-dimensional regression parameters is of interest. We prove that applying the Storey (2002)'s procedure to the proposed test statistics for each regression parameter controls FDR asymptotically in longitudinal data. We conduct simulation studies to assess the finite sample performance of the proposed procedures. Our simulation results imply that the newly proposed procedure can control both Type I error for testing a low dimensional parameter of interest and the FDR in the multiple testing problem. We also apply the proposed procedure to a real data example.</p>","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"48 5","pages":"2622-2645"},"PeriodicalIF":4.5,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277154/pdf/nihms-1614211.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39189359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}