Annals of StatisticsPub Date : 2024-06-01Epub Date: 2024-08-11DOI: 10.1214/24-aos2378
Bingxin Zhao, Shurong Zheng, Hongtu Zhu
{"title":"ON BLOCKWISE AND REFERENCE PANEL-BASED ESTIMATORS FOR GENETIC DATA PREDICTION IN HIGH DIMENSIONS.","authors":"Bingxin Zhao, Shurong Zheng, Hongtu Zhu","doi":"10.1214/24-aos2378","DOIUrl":"10.1214/24-aos2378","url":null,"abstract":"<p><p>Genetic prediction holds immense promise for translating genetic discoveries into medical advances. As the high-dimensional covariance matrix (or the linkage disequilibrium (LD) pattern) of genetic variants often presents a block-diagonal structure, numerous methods account for the dependence among variants in predetermined local LD blocks. Moreover, due to privacy considerations and data protection concerns, genetic variant dependence in each LD block is typically estimated from external reference panels rather than the original training data set. This paper presents a unified analysis of blockwise and reference panel-based estimators in a high-dimensional prediction framework without sparsity restrictions. We find that, surprisingly, even when the covariance matrix has a block-diagonal structure with well-defined boundaries, blockwise estimation methods adjusting for local dependence can be substantially less accurate than methods controlling for the whole covariance matrix. Further, estimation methods built on the original training data set and external reference panels are likely to have varying performance in high dimensions, which may reflect the cost of having only access to summary level data from the training data set. This analysis is based on novel results in random matrix theory for block-diagonal covariance matrix. We numerically evaluate our results using extensive simulations and real data analysis in the UK Biobank.</p>","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"52 3","pages":"948-965"},"PeriodicalIF":3.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391480/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annals of StatisticsPub Date : 2024-02-01Epub Date: 2024-03-07DOI: 10.1214/23-aos2339
Yeqing Zhou, Kai Xu, Liping Zhu, Runze Li
{"title":"RANK-BASED INDICES FOR TESTING INDEPENDENCE BETWEEN TWO HIGH-DIMENSIONAL VECTORS.","authors":"Yeqing Zhou, Kai Xu, Liping Zhu, Runze Li","doi":"10.1214/23-aos2339","DOIUrl":"10.1214/23-aos2339","url":null,"abstract":"<p><p>To test independence between two high-dimensional random vectors, we propose three tests based on the rank-based indices derived from Hoeffding's <math><mi>D</mi></math>, Blum-Kiefer-Rosenblatt's <math><mi>R</mi></math> and Bergsma-Dassios-Yanagimoto's <math><msup><mrow><mi>τ</mi></mrow><mrow><mo>*</mo></mrow></msup></math>. Under the null hypothesis of independence, we show that the distributions of the proposed test statistics converge to normal ones if the dimensions diverge arbitrarily with the sample size. We further derive an explicit rate of convergence. Thanks to the monotone transformation-invariant property, these distribution-free tests can be readily used to generally distributed random vectors including heavily tailed ones. We further study the local power of the proposed tests and compare their relative efficiencies with two classic distance covariance/correlation based tests in high dimensional settings. We establish explicit relationships between <math><mi>D</mi><mo>,</mo><mi>R</mi><mo>,</mo><msup><mrow><mi>τ</mi></mrow><mrow><mo>*</mo></mrow></msup></math> and Pearson's correlation for bivariate normal random variables. The relationships serve as a basis for power comparison. Our theoretical results show that under a Gaussian equicorrelation alternative, (i) the proposed tests are superior to the two classic distance covariance/correlation based tests if the components of random vectors have very different scales; (ii) the asymptotic efficiency of the proposed tests based on <math><mi>D</mi><mo>,</mo><msup><mrow><mi>τ</mi></mrow><mrow><mo>*</mo></mrow></msup></math> and <math><mi>R</mi></math> are sorted in a descending order.</p>","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"52 1","pages":"184-206"},"PeriodicalIF":4.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11064990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Order-of-addition orthogonal arrays to study the effect of treatment ordering","authors":"Eric D. Schoen, Robert W. Mee","doi":"10.1214/23-aos2317","DOIUrl":"https://doi.org/10.1214/23-aos2317","url":null,"abstract":"The effect of the order in which a set of m treatments is applied can be modeled by relative-position factors that indicate whether treatment i is carried out before or after treatment j, or by the absolute position for treatment i in the sequence. A design with the same normalized information matrix as the design with all m! sequences is D- and G-optimal for the main-effects model involving the relative-position factors. We prove that such designs are also I-optimal for this model and D-optimal as well as G- and I-optimal for the first-order model in the absolute-position factors. We propose a methodology for a complete or partial enumeration of nonequivalent designs that are optimal for both models.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Matching recovery threshold for correlated random graphs","authors":"Jian Ding, Hang Du","doi":"10.1214/23-aos2305","DOIUrl":"https://doi.org/10.1214/23-aos2305","url":null,"abstract":"For two correlated graphs which are independently sub-sampled from a common Erdős–Rényi graph G(n,p), we wish to recover their latent vertex matching from the observation of these two graphs without labels. When p=n−α+o(1) for α∈(0,1], we establish a sharp information-theoretic threshold for whether it is possible to correctly match a positive fraction of vertices. Our result sharpens a constant factor in a recent work by Wu, Xu and Yu.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"85 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Statistical inference on a changing extreme value dependence structure","authors":"Holger Drees","doi":"10.1214/23-aos2314","DOIUrl":"https://doi.org/10.1214/23-aos2314","url":null,"abstract":"We analyze the extreme value dependence of independent, not necessarily identically distributed multivariate regularly varying random vectors. More specifically, we propose estimators of the spectral measure locally at some time point and of the spectral measures integrated over time. The uniform asymptotic normality of these estimators is proved under suitable nonparametric smoothness and regularity assumptions. We then use the process convergence of the integrated spectral measure to devise consistent tests for the null hypothesis that the spectral measure does not change over time.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Post-selection inference via algorithmic stability","authors":"Tijana Zrnic, Michael I. Jordan","doi":"10.1214/23-aos2303","DOIUrl":"https://doi.org/10.1214/23-aos2303","url":null,"abstract":"When the target of statistical inference is chosen in a data-driven manner, the guarantees provided by classical theories vanish. We propose a solution to the problem of inference after selection by building on the framework of algorithmic stability, in particular its branch with origins in the field of differential privacy. Stability is achieved via randomization of selection and it serves as a quantitative measure that is sufficient to obtain nontrivial post-selection corrections for classical confidence intervals. Importantly, the underpinnings of algorithmic stability translate directly into computational efficiency—our method computes simple corrections for selective inference without recourse to Markov chain Monte Carlo sampling.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135165184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bridging factor and sparse models","authors":"Jianqing Fan, Ricardo Masini, Marcelo C. Medeiros","doi":"10.1214/23-aos2304","DOIUrl":"https://doi.org/10.1214/23-aos2304","url":null,"abstract":"Factor and sparse models are widely used to impose a low-dimensional structure in high-dimensions. However, they are seemingly mutually exclusive. We propose a lifting method that combines the merits of these two models in a supervised learning methodology that allows for efficiently exploring all the information in high-dimensional datasets. The method is based on a flexible model for high-dimensional panel data with observable and/or latent common factors and idiosyncratic components. The model is called the factor-augmented regression model. It includes principal components and sparse regression as specific models, significantly weakens the cross-sectional dependence, and facilitates model selection and interpretability. The method consists of several steps and a novel test for (partial) covariance structure in high dimensions to infer the remaining cross-section dependence at each step. We develop the theory for the model and demonstrate the validity of the multiplier bootstrap for testing a high-dimensional (partial) covariance structure. A simulation study and applications support the theory.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134951962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Projected state-action balancing weights for offline reinforcement learning","authors":"Jiayi Wang, Zhengling Qi, Raymond K. W. Wong","doi":"10.1214/23-aos2302","DOIUrl":"https://doi.org/10.1214/23-aos2302","url":null,"abstract":"Off-policy evaluation is considered a fundamental and challenging problem in reinforcement learning (RL). This paper focuses on value estimation of a target policy based on pre-collected data generated from a possibly different policy, under the framework of infinite-horizon Markov decision processes. Motivated by the recently developed marginal importance sampling method in RL and the covariate balancing idea in causal inference, we propose a novel estimator with approximately projected state-action balancing weights for the policy value estimation. We obtain the convergence rate of these weights, and show that the proposed value estimator is asymptotically normal under technical conditions. In terms of asymptotics, our results scale with both the number of trajectories and the number of decision points at each trajectory. As such, consistency can still be achieved with a limited number of subjects when the number of decision points diverges. In addition, we develop a necessary and sufficient condition for establishing the well-posedness of the operator that relates to the nonparametric Q-function estimation in the off-policy setting, which characterizes the difficulty of Q-function estimation and may be of independent interest. Numerical experiments demonstrate the promising performance of our proposed estimator.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A cross-validation framework for signal denoising with applications to trend filtering, dyadic CART and beyond","authors":"Anamitra Chaudhuri, Sabyasachi Chatterjee","doi":"10.1214/23-aos2283","DOIUrl":"https://doi.org/10.1214/23-aos2283","url":null,"abstract":"This paper formulates a general cross-validation framework for signal denoising. The general framework is then applied to nonparametric regression methods such as trend filtering and dyadic CART. The resulting cross-validated versions are then shown to attain nearly the same rates of convergence as are known for the optimally tuned analogues. There did not exist any previous theoretical analyses of cross-validated versions of trend filtering or dyadic CART. To illustrate the generality of the framework, we also propose and study cross-validated versions of two fundamental estimators; lasso for high-dimensional linear regression and singular value thresholding for matrix estimation. Our general framework is inspired by the ideas in Chatterjee and Jafarov (2015) and is potentially applicable to a wide range of estimation methods which use tuning parameters.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relaxing the i.i.d. assumption: Adaptively minimax optimal regret via root-entropic regularization","authors":"Blair Bilodeau, Jeffrey Negrea, Daniel M. Roy","doi":"10.1214/23-aos2315","DOIUrl":"https://doi.org/10.1214/23-aos2315","url":null,"abstract":"We consider prediction with expert advice when data are generated from distributions varying arbitrarily within an unknown constraint set. This semi-adversarial setting includes (at the extremes) the classical i.i.d. setting, when the unknown constraint set is restricted to be a singleton, and the unconstrained adversarial setting, when the constraint set is the set of all distributions. The Hedge algorithm—long known to be minimax (rate) optimal in the adversarial regime—was recently shown to be simultaneously minimax optimal for i.i.d. data. In this work, we propose to relax the i.i.d. assumption by seeking adaptivity at all levels of a natural ordering on constraint sets. We provide matching upper and lower bounds on the minimax regret at all levels, show that Hedge with deterministic learning rates is suboptimal outside of the extremes and prove that one can adaptively obtain minimax regret at all levels. We achieve this optimal adaptivity using the follow-the-regularized-leader (FTRL) framework, with a novel adaptive regularization scheme that implicitly scales as the square root of the entropy of the current predictive distribution, rather than the entropy of the initial predictive distribution. Finally, we provide novel technical tools to study the statistical performance of FTRL along the semi-adversarial spectrum.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135165186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}