REINFORCEMENT LEARNING FOR INDIVIDUAL OPTIMAL POLICY FROM HETEROGENEOUS DATA.

IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY
By Rui Miao, Babak Shahbaba, Annie Qu
{"title":"REINFORCEMENT LEARNING FOR INDIVIDUAL OPTIMAL POLICY FROM HETEROGENEOUS DATA.","authors":"By Rui Miao, Babak Shahbaba, Annie Qu","doi":"10.1214/25-aos2512","DOIUrl":null,"url":null,"abstract":"<p><p>Offline reinforcement learning (RL) aims to find optimal policies in dynamic environments in order to maximize the expected total rewards by leveraging pre-collected data. Learning from heterogeneous data is one of the fundamental challenges in offline RL. Traditional methods focus on learning an optimal policy for all individuals with pre-collected data from a single episode or homogeneous batch episodes, and thus, may result in a suboptimal policy for a heterogeneous population. In this paper, we propose an individualized offline policy optimization framework for heterogeneous time-stationary Markov decision processes (MDPs). The proposed heterogeneous model with individual latent variables enables us to efficiently estimate the individual Q-functions, and our Penalized Pessimistic Personalized Policy Learning (P4L) algorithm guarantees a fast rate on the average regret under a weak partial coverage assumption on behavior policies. In addition, our simulation studies and a real data application demonstrate the superior numerical performance of the proposed method compared with existing methods.</p>","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"53 4","pages":"1513-1534"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12439830/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/25-aos2512","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Offline reinforcement learning (RL) aims to find optimal policies in dynamic environments in order to maximize the expected total rewards by leveraging pre-collected data. Learning from heterogeneous data is one of the fundamental challenges in offline RL. Traditional methods focus on learning an optimal policy for all individuals with pre-collected data from a single episode or homogeneous batch episodes, and thus, may result in a suboptimal policy for a heterogeneous population. In this paper, we propose an individualized offline policy optimization framework for heterogeneous time-stationary Markov decision processes (MDPs). The proposed heterogeneous model with individual latent variables enables us to efficiently estimate the individual Q-functions, and our Penalized Pessimistic Personalized Policy Learning (P4L) algorithm guarantees a fast rate on the average regret under a weak partial coverage assumption on behavior policies. In addition, our simulation studies and a real data application demonstrate the superior numerical performance of the proposed method compared with existing methods.

基于异构数据的个体最优策略强化学习。
离线强化学习(RL)旨在利用预先收集的数据,在动态环境中找到最优策略,从而最大化预期的总回报。从异构数据中学习是离线强化学习的基本挑战之一。传统方法侧重于从单个事件或同质批次事件中预先收集数据的所有个体学习最优策略,因此,对于异质群体可能导致次优策略。本文提出了一种针对异构时平稳马尔可夫决策过程的个性化离线策略优化框架。我们提出的具有单个潜在变量的异构模型使我们能够有效地估计单个q函数,并且我们的惩罚悲观个性化策略学习(P4L)算法保证了在行为策略的弱部分覆盖假设下的快速平均后悔率。此外,我们的仿真研究和实际数据应用表明,与现有方法相比,所提出的方法具有优越的数值性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Statistics
Annals of Statistics 数学-统计学与概率论
CiteScore
9.30
自引率
8.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信