相关随机图的匹配恢复阈值

IF 3.2 1区 数学 Q1 STATISTICS & PROBABILITY
Jian Ding, Hang Du
{"title":"相关随机图的匹配恢复阈值","authors":"Jian Ding, Hang Du","doi":"10.1214/23-aos2305","DOIUrl":null,"url":null,"abstract":"For two correlated graphs which are independently sub-sampled from a common Erdős–Rényi graph G(n,p), we wish to recover their latent vertex matching from the observation of these two graphs without labels. When p=n−α+o(1) for α∈(0,1], we establish a sharp information-theoretic threshold for whether it is possible to correctly match a positive fraction of vertices. Our result sharpens a constant factor in a recent work by Wu, Xu and Yu.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"85 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Matching recovery threshold for correlated random graphs\",\"authors\":\"Jian Ding, Hang Du\",\"doi\":\"10.1214/23-aos2305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For two correlated graphs which are independently sub-sampled from a common Erdős–Rényi graph G(n,p), we wish to recover their latent vertex matching from the observation of these two graphs without labels. When p=n−α+o(1) for α∈(0,1], we establish a sharp information-theoretic threshold for whether it is possible to correctly match a positive fraction of vertices. Our result sharpens a constant factor in a recent work by Wu, Xu and Yu.\",\"PeriodicalId\":8032,\"journal\":{\"name\":\"Annals of Statistics\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-aos2305\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-aos2305","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 13

摘要

对于从一个公共Erdős-Rényi图G(n,p)中独立子采样的两个相关图,我们希望从这两个没有标记的图的观察中恢复它们的潜在顶点匹配。对于α∈(0,1),当p=n−α+o(1)时,我们建立了一个尖锐的信息论阈值,以确定是否有可能正确匹配顶点的正分数。我们的结果强化了Wu, Xu和Yu最近工作中的一个常数因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matching recovery threshold for correlated random graphs
For two correlated graphs which are independently sub-sampled from a common Erdős–Rényi graph G(n,p), we wish to recover their latent vertex matching from the observation of these two graphs without labels. When p=n−α+o(1) for α∈(0,1], we establish a sharp information-theoretic threshold for whether it is possible to correctly match a positive fraction of vertices. Our result sharpens a constant factor in a recent work by Wu, Xu and Yu.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Statistics
Annals of Statistics 数学-统计学与概率论
CiteScore
9.30
自引率
8.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信