{"title":"相关随机图的匹配恢复阈值","authors":"Jian Ding, Hang Du","doi":"10.1214/23-aos2305","DOIUrl":null,"url":null,"abstract":"For two correlated graphs which are independently sub-sampled from a common Erdős–Rényi graph G(n,p), we wish to recover their latent vertex matching from the observation of these two graphs without labels. When p=n−α+o(1) for α∈(0,1], we establish a sharp information-theoretic threshold for whether it is possible to correctly match a positive fraction of vertices. Our result sharpens a constant factor in a recent work by Wu, Xu and Yu.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Matching recovery threshold for correlated random graphs\",\"authors\":\"Jian Ding, Hang Du\",\"doi\":\"10.1214/23-aos2305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For two correlated graphs which are independently sub-sampled from a common Erdős–Rényi graph G(n,p), we wish to recover their latent vertex matching from the observation of these two graphs without labels. When p=n−α+o(1) for α∈(0,1], we establish a sharp information-theoretic threshold for whether it is possible to correctly match a positive fraction of vertices. Our result sharpens a constant factor in a recent work by Wu, Xu and Yu.\",\"PeriodicalId\":8032,\"journal\":{\"name\":\"Annals of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-aos2305\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-aos2305","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Matching recovery threshold for correlated random graphs
For two correlated graphs which are independently sub-sampled from a common Erdős–Rényi graph G(n,p), we wish to recover their latent vertex matching from the observation of these two graphs without labels. When p=n−α+o(1) for α∈(0,1], we establish a sharp information-theoretic threshold for whether it is possible to correctly match a positive fraction of vertices. Our result sharpens a constant factor in a recent work by Wu, Xu and Yu.
期刊介绍:
The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.