NONLINEAR GLOBAL FRÉCHET REGRESSION FOR RANDOM OBJECTS VIA WEAK CONDITIONAL EXPECTATION.

IF 3.7 1区 数学 Q1 STATISTICS & PROBABILITY
Annals of Statistics Pub Date : 2025-02-01 Epub Date: 2025-02-13 DOI:10.1214/24-aos2457
Satarupa Bhattacharjee, Bing Li, Lingzhou Xue
{"title":"NONLINEAR GLOBAL FRÉCHET REGRESSION FOR RANDOM OBJECTS VIA WEAK CONDITIONAL EXPECTATION.","authors":"Satarupa Bhattacharjee, Bing Li, Lingzhou Xue","doi":"10.1214/24-aos2457","DOIUrl":null,"url":null,"abstract":"<p><p>Random objects are complex non-Euclidean data taking values in general metric spaces, possibly devoid of any underlying vector space structure. Such data are becoming increasingly abundant with the rapid advancement in technology. Examples include probability distributions, positive semidefinite matrices and data on Riemannian manifolds. However, except for regression for object-valued response with Euclidean predictors and distribution-on-distribution regression, there has been limited development of a general framework for object-valued response with object-valued predictors in the literature. To fill this gap, we introduce the notion of a weak conditional Fréchet mean based on Carleman operators and then propose a global nonlinear Fréchet regression model through the reproducing kernel Hilbert space (RKHS) embedding. Furthermore, we establish the relationships between the conditional Fréchet mean and the weak conditional Fréchet mean for both Euclidean and object-valued data. We also show that the state-of-the-art global Fréchet regression developed by Petersen and Müller (<i>Ann</i>. <i>Statist</i>. <b>47</b> (2019) 691-719) emerges as a special case of our method by choosing a linear kernel. We require that the metric space for the predictor admits a reproducing kernel, while the intrinsic geometry of the metric space for the response is utilized to study the asymptotic properties of the proposed estimates. Numerical studies, including extensive simulations and a real application, are conducted to investigate the finite-sample performance.</p>","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"53 1","pages":"117-143"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407180/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/24-aos2457","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Random objects are complex non-Euclidean data taking values in general metric spaces, possibly devoid of any underlying vector space structure. Such data are becoming increasingly abundant with the rapid advancement in technology. Examples include probability distributions, positive semidefinite matrices and data on Riemannian manifolds. However, except for regression for object-valued response with Euclidean predictors and distribution-on-distribution regression, there has been limited development of a general framework for object-valued response with object-valued predictors in the literature. To fill this gap, we introduce the notion of a weak conditional Fréchet mean based on Carleman operators and then propose a global nonlinear Fréchet regression model through the reproducing kernel Hilbert space (RKHS) embedding. Furthermore, we establish the relationships between the conditional Fréchet mean and the weak conditional Fréchet mean for both Euclidean and object-valued data. We also show that the state-of-the-art global Fréchet regression developed by Petersen and Müller (Ann. Statist. 47 (2019) 691-719) emerges as a special case of our method by choosing a linear kernel. We require that the metric space for the predictor admits a reproducing kernel, while the intrinsic geometry of the metric space for the response is utilized to study the asymptotic properties of the proposed estimates. Numerical studies, including extensive simulations and a real application, are conducted to investigate the finite-sample performance.

基于弱条件期望的随机对象非线性全局frÉchet回归。
随机对象是在一般度量空间中取值的复杂非欧几里得数据,可能没有任何潜在的向量空间结构。随着科技的飞速发展,这些数据也越来越丰富。例子包括概率分布、正半定矩阵和黎曼流形上的数据。然而,除了用欧几里得预测器对对象值响应进行回归和分布对分布回归之外,文献中对对象值预测器对对象值响应的一般框架的发展有限。为了填补这一空白,我们引入了基于Carleman算子的弱条件frcims均值的概念,并通过再现核希尔伯特空间(RKHS)嵌入提出了一个全局非线性frcims回归模型。此外,我们还建立了欧几里得数据和对象值数据的条件fr平均和弱条件fr平均之间的关系。我们还展示了由Petersen和m ller (Ann。Statist. 47(2019) 691-719)通过选择线性核作为我们方法的特殊情况出现。我们要求预测器的度量空间允许一个再现核,而响应的度量空间的固有几何特性被用来研究所提出估计的渐近性质。数值研究,包括广泛的模拟和实际应用,进行了研究有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Statistics
Annals of Statistics 数学-统计学与概率论
CiteScore
9.30
自引率
8.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信