哈密顿蒙特卡罗的不可约性和几何遍历性

IF 3.2 1区 数学 Q1 STATISTICS & PROBABILITY
Alain Durmus, É. Moulines, E. Saksman
{"title":"哈密顿蒙特卡罗的不可约性和几何遍历性","authors":"Alain Durmus, É. Moulines, E. Saksman","doi":"10.1214/19-aos1941","DOIUrl":null,"url":null,"abstract":"Hamiltonian Monte Carlo (HMC) is currently one of the most popular Markov Chain Monte Carlo algorithms to sample smooth distributions over continuous state space. This paper discusses the irreducibility and geometric ergodicity of the HMC algorithm. We consider cases where the number of steps of the StörmerVerlet integrator is either fixed or random. Under mild conditions on the potential U associated with target distribution π, we first show that the Markov kernel associated to the HMC algorithm is irreducible and positive recurrent. Under more stringent conditions, we then establish that the Markov kernel is Harris recurrent. We provide verifiable conditions on U under which the HMC sampler is geometrically ergodic. Finally, we illustrate our results on several examples.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"48 1","pages":"3545-3564"},"PeriodicalIF":3.2000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Irreducibility and geometric ergodicity of Hamiltonian Monte Carlo\",\"authors\":\"Alain Durmus, É. Moulines, E. Saksman\",\"doi\":\"10.1214/19-aos1941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hamiltonian Monte Carlo (HMC) is currently one of the most popular Markov Chain Monte Carlo algorithms to sample smooth distributions over continuous state space. This paper discusses the irreducibility and geometric ergodicity of the HMC algorithm. We consider cases where the number of steps of the StörmerVerlet integrator is either fixed or random. Under mild conditions on the potential U associated with target distribution π, we first show that the Markov kernel associated to the HMC algorithm is irreducible and positive recurrent. Under more stringent conditions, we then establish that the Markov kernel is Harris recurrent. We provide verifiable conditions on U under which the HMC sampler is geometrically ergodic. Finally, we illustrate our results on several examples.\",\"PeriodicalId\":8032,\"journal\":{\"name\":\"Annals of Statistics\",\"volume\":\"48 1\",\"pages\":\"3545-3564\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/19-aos1941\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aos1941","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 11

摘要

哈密顿蒙特卡罗算法(HMC)是目前最流行的用于连续状态空间上光滑分布采样的马尔可夫链蒙特卡罗算法之一。本文讨论了HMC算法的不可约性和几何遍历性。我们考虑StörmerVerlet积分器的步数是固定的或随机的情况。在与目标分布π相关的潜在U的温和条件下,我们首先证明了与HMC算法相关的马尔可夫核是不可约的和正循环的。在更严格的条件下,我们建立了Markov核是Harris递归的。我们在U上给出了HMC采样器几何遍历的可验证条件。最后,我们用几个例子来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Irreducibility and geometric ergodicity of Hamiltonian Monte Carlo
Hamiltonian Monte Carlo (HMC) is currently one of the most popular Markov Chain Monte Carlo algorithms to sample smooth distributions over continuous state space. This paper discusses the irreducibility and geometric ergodicity of the HMC algorithm. We consider cases where the number of steps of the StörmerVerlet integrator is either fixed or random. Under mild conditions on the potential U associated with target distribution π, we first show that the Markov kernel associated to the HMC algorithm is irreducible and positive recurrent. Under more stringent conditions, we then establish that the Markov kernel is Harris recurrent. We provide verifiable conditions on U under which the HMC sampler is geometrically ergodic. Finally, we illustrate our results on several examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Statistics
Annals of Statistics 数学-统计学与概率论
CiteScore
9.30
自引率
8.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信