随机微分方程i.i.d.路径的非参数漂移估计

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
F. Comte, V. Genon-Catalot
{"title":"随机微分方程i.i.d.路径的非参数漂移估计","authors":"F. Comte, V. Genon-Catalot","doi":"10.1214/19-aos1933","DOIUrl":null,"url":null,"abstract":"By Fabienne Comte∗, Valentine Genon-Catalot∗ Université de Paris, MAP5, CNRS, F-75006, France ∗ We considerN independent stochastic processes (Xi(t), t ∈ [0, T ]), i = 1, . . . , N , de ned by a one-dimensional stochastic di erential equation which are continuously observed throughout a time interval [0, T ] where T is xed. We study nonparametric estimation of the drift function on a given subset A of R. Projection estimators are de ned on nite dimensional subsets of L(A, dx). We stress that the set A may be compact or not and the di usion coe cient may be bounded or not. A data-driven procedure to select the dimension of the projection space is proposed where the dimension is chosen within a random collection of models. Upper bounds of risks are obtained, the assumptions are discussed and simulation experiments are reported.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Nonparametric drift estimation for i.i.d. paths of stochastic differential equations\",\"authors\":\"F. Comte, V. Genon-Catalot\",\"doi\":\"10.1214/19-aos1933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By Fabienne Comte∗, Valentine Genon-Catalot∗ Université de Paris, MAP5, CNRS, F-75006, France ∗ We considerN independent stochastic processes (Xi(t), t ∈ [0, T ]), i = 1, . . . , N , de ned by a one-dimensional stochastic di erential equation which are continuously observed throughout a time interval [0, T ] where T is xed. We study nonparametric estimation of the drift function on a given subset A of R. Projection estimators are de ned on nite dimensional subsets of L(A, dx). We stress that the set A may be compact or not and the di usion coe cient may be bounded or not. A data-driven procedure to select the dimension of the projection space is proposed where the dimension is chosen within a random collection of models. Upper bounds of risks are obtained, the assumptions are discussed and simulation experiments are reported.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/19-aos1933\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aos1933","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 22

摘要

Fabienne Comte*,Valentine Genon-Catalot*,巴黎大学,MAP5,CNRS,F-75006,法国*我们考虑N个独立随机过程(Xi(t),t∈[0,t]),i=1,N,由一维随机微分方程定义,该方程在整个时间间隔[0,T]内连续观测,其中T为x。我们研究了R的给定子集a上漂移函数的非参数估计。在L(a,dx)的nite维子集上定义了投影估计。我们强调集合A可以是紧致的,也可以是非紧致的,并且扩散系数可以是有界的。提出了一种选择投影空间尺寸的数据驱动程序,其中尺寸是在随机模型集合中选择的。获得了风险的上限,讨论了假设,并报告了模拟实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric drift estimation for i.i.d. paths of stochastic differential equations
By Fabienne Comte∗, Valentine Genon-Catalot∗ Université de Paris, MAP5, CNRS, F-75006, France ∗ We considerN independent stochastic processes (Xi(t), t ∈ [0, T ]), i = 1, . . . , N , de ned by a one-dimensional stochastic di erential equation which are continuously observed throughout a time interval [0, T ] where T is xed. We study nonparametric estimation of the drift function on a given subset A of R. Projection estimators are de ned on nite dimensional subsets of L(A, dx). We stress that the set A may be compact or not and the di usion coe cient may be bounded or not. A data-driven procedure to select the dimension of the projection space is proposed where the dimension is chosen within a random collection of models. Upper bounds of risks are obtained, the assumptions are discussed and simulation experiments are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信