{"title":"随机微分方程i.i.d.路径的非参数漂移估计","authors":"F. Comte, V. Genon-Catalot","doi":"10.1214/19-aos1933","DOIUrl":null,"url":null,"abstract":"By Fabienne Comte∗, Valentine Genon-Catalot∗ Université de Paris, MAP5, CNRS, F-75006, France ∗ We considerN independent stochastic processes (Xi(t), t ∈ [0, T ]), i = 1, . . . , N , de ned by a one-dimensional stochastic di erential equation which are continuously observed throughout a time interval [0, T ] where T is xed. We study nonparametric estimation of the drift function on a given subset A of R. Projection estimators are de ned on nite dimensional subsets of L(A, dx). We stress that the set A may be compact or not and the di usion coe cient may be bounded or not. A data-driven procedure to select the dimension of the projection space is proposed where the dimension is chosen within a random collection of models. Upper bounds of risks are obtained, the assumptions are discussed and simulation experiments are reported.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"48 1","pages":"3336-3365"},"PeriodicalIF":3.2000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Nonparametric drift estimation for i.i.d. paths of stochastic differential equations\",\"authors\":\"F. Comte, V. Genon-Catalot\",\"doi\":\"10.1214/19-aos1933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By Fabienne Comte∗, Valentine Genon-Catalot∗ Université de Paris, MAP5, CNRS, F-75006, France ∗ We considerN independent stochastic processes (Xi(t), t ∈ [0, T ]), i = 1, . . . , N , de ned by a one-dimensional stochastic di erential equation which are continuously observed throughout a time interval [0, T ] where T is xed. We study nonparametric estimation of the drift function on a given subset A of R. Projection estimators are de ned on nite dimensional subsets of L(A, dx). We stress that the set A may be compact or not and the di usion coe cient may be bounded or not. A data-driven procedure to select the dimension of the projection space is proposed where the dimension is chosen within a random collection of models. Upper bounds of risks are obtained, the assumptions are discussed and simulation experiments are reported.\",\"PeriodicalId\":8032,\"journal\":{\"name\":\"Annals of Statistics\",\"volume\":\"48 1\",\"pages\":\"3336-3365\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/19-aos1933\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aos1933","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Nonparametric drift estimation for i.i.d. paths of stochastic differential equations
By Fabienne Comte∗, Valentine Genon-Catalot∗ Université de Paris, MAP5, CNRS, F-75006, France ∗ We considerN independent stochastic processes (Xi(t), t ∈ [0, T ]), i = 1, . . . , N , de ned by a one-dimensional stochastic di erential equation which are continuously observed throughout a time interval [0, T ] where T is xed. We study nonparametric estimation of the drift function on a given subset A of R. Projection estimators are de ned on nite dimensional subsets of L(A, dx). We stress that the set A may be compact or not and the di usion coe cient may be bounded or not. A data-driven procedure to select the dimension of the projection space is proposed where the dimension is chosen within a random collection of models. Upper bounds of risks are obtained, the assumptions are discussed and simulation experiments are reported.
期刊介绍:
The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.