随机微分方程i.i.d.路径的非参数漂移估计

IF 3.2 1区 数学 Q1 STATISTICS & PROBABILITY
F. Comte, V. Genon-Catalot
{"title":"随机微分方程i.i.d.路径的非参数漂移估计","authors":"F. Comte, V. Genon-Catalot","doi":"10.1214/19-aos1933","DOIUrl":null,"url":null,"abstract":"By Fabienne Comte∗, Valentine Genon-Catalot∗ Université de Paris, MAP5, CNRS, F-75006, France ∗ We considerN independent stochastic processes (Xi(t), t ∈ [0, T ]), i = 1, . . . , N , de ned by a one-dimensional stochastic di erential equation which are continuously observed throughout a time interval [0, T ] where T is xed. We study nonparametric estimation of the drift function on a given subset A of R. Projection estimators are de ned on nite dimensional subsets of L(A, dx). We stress that the set A may be compact or not and the di usion coe cient may be bounded or not. A data-driven procedure to select the dimension of the projection space is proposed where the dimension is chosen within a random collection of models. Upper bounds of risks are obtained, the assumptions are discussed and simulation experiments are reported.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"48 1","pages":"3336-3365"},"PeriodicalIF":3.2000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Nonparametric drift estimation for i.i.d. paths of stochastic differential equations\",\"authors\":\"F. Comte, V. Genon-Catalot\",\"doi\":\"10.1214/19-aos1933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By Fabienne Comte∗, Valentine Genon-Catalot∗ Université de Paris, MAP5, CNRS, F-75006, France ∗ We considerN independent stochastic processes (Xi(t), t ∈ [0, T ]), i = 1, . . . , N , de ned by a one-dimensional stochastic di erential equation which are continuously observed throughout a time interval [0, T ] where T is xed. We study nonparametric estimation of the drift function on a given subset A of R. Projection estimators are de ned on nite dimensional subsets of L(A, dx). We stress that the set A may be compact or not and the di usion coe cient may be bounded or not. A data-driven procedure to select the dimension of the projection space is proposed where the dimension is chosen within a random collection of models. Upper bounds of risks are obtained, the assumptions are discussed and simulation experiments are reported.\",\"PeriodicalId\":8032,\"journal\":{\"name\":\"Annals of Statistics\",\"volume\":\"48 1\",\"pages\":\"3336-3365\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/19-aos1933\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aos1933","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 22

摘要

Fabienne Comte*,Valentine Genon-Catalot*,巴黎大学,MAP5,CNRS,F-75006,法国*我们考虑N个独立随机过程(Xi(t),t∈[0,t]),i=1,N,由一维随机微分方程定义,该方程在整个时间间隔[0,T]内连续观测,其中T为x。我们研究了R的给定子集a上漂移函数的非参数估计。在L(a,dx)的nite维子集上定义了投影估计。我们强调集合A可以是紧致的,也可以是非紧致的,并且扩散系数可以是有界的。提出了一种选择投影空间尺寸的数据驱动程序,其中尺寸是在随机模型集合中选择的。获得了风险的上限,讨论了假设,并报告了模拟实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric drift estimation for i.i.d. paths of stochastic differential equations
By Fabienne Comte∗, Valentine Genon-Catalot∗ Université de Paris, MAP5, CNRS, F-75006, France ∗ We considerN independent stochastic processes (Xi(t), t ∈ [0, T ]), i = 1, . . . , N , de ned by a one-dimensional stochastic di erential equation which are continuously observed throughout a time interval [0, T ] where T is xed. We study nonparametric estimation of the drift function on a given subset A of R. Projection estimators are de ned on nite dimensional subsets of L(A, dx). We stress that the set A may be compact or not and the di usion coe cient may be bounded or not. A data-driven procedure to select the dimension of the projection space is proposed where the dimension is chosen within a random collection of models. Upper bounds of risks are obtained, the assumptions are discussed and simulation experiments are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Statistics
Annals of Statistics 数学-统计学与概率论
CiteScore
9.30
自引率
8.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信