Assessment of the extent of corroboration of an elaborate theory of a causal hypothesis using partial conjunctions of evidence factors

IF 3.2 1区 数学 Q1 STATISTICS & PROBABILITY
B. Karmakar, Dylan S. Small
{"title":"Assessment of the extent of corroboration of an elaborate theory of a causal hypothesis using partial conjunctions of evidence factors","authors":"B. Karmakar, Dylan S. Small","doi":"10.1214/19-aos1929","DOIUrl":null,"url":null,"abstract":"An elaborate theory of predictions of a causal hypothesis consists of several falsifiable statements derived from the causal hypothesis. Statistical tests for the various pieces of the elaborate theory help to clarify how much the causal hypothesis is corroborated. In practice, the degree of corroboration of the causal hypothesis has been assessed by a verbal description of which of the several tests provides evidence for which of the several predictions. This verbal approach can miss quantitative patterns. In this paper, we develop a quantitative approach. We first decompose these various tests of the predictions into independent factors with different sources of potential biases. Support for the causal hypothesis is enhanced when many of these evidence factors support the predictions. A sensitivity analysis is used to assess the potential bias that could make the finding of the tests spurious. Along with this multi-parameter sensitivity analysis, we consider the partial conjunctions of the tests. These partial conjunctions quantify the evidence supporting various fractions of the collection of predictions. A partial conjunction test involves combining tests of the components in the partial conjunction. We find the asymptotically optimal combination of tests in the context of a sensitivity analysis. Our analysis of an elaborate theory of a causal hypothesis controls for the familywise error rate.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"48 1","pages":"3283-3311"},"PeriodicalIF":3.2000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aos1929","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 7

Abstract

An elaborate theory of predictions of a causal hypothesis consists of several falsifiable statements derived from the causal hypothesis. Statistical tests for the various pieces of the elaborate theory help to clarify how much the causal hypothesis is corroborated. In practice, the degree of corroboration of the causal hypothesis has been assessed by a verbal description of which of the several tests provides evidence for which of the several predictions. This verbal approach can miss quantitative patterns. In this paper, we develop a quantitative approach. We first decompose these various tests of the predictions into independent factors with different sources of potential biases. Support for the causal hypothesis is enhanced when many of these evidence factors support the predictions. A sensitivity analysis is used to assess the potential bias that could make the finding of the tests spurious. Along with this multi-parameter sensitivity analysis, we consider the partial conjunctions of the tests. These partial conjunctions quantify the evidence supporting various fractions of the collection of predictions. A partial conjunction test involves combining tests of the components in the partial conjunction. We find the asymptotically optimal combination of tests in the context of a sensitivity analysis. Our analysis of an elaborate theory of a causal hypothesis controls for the familywise error rate.
利用证据因素的部分连词对因果假设的详细理论的确证程度进行评估
因果假设的详细预测理论包括从因果假设推导出的几个可证伪的陈述。对这一复杂理论的各个部分进行统计检验,有助于澄清因果假设得到了多少证实。在实践中,因果假设的确证程度是通过口头描述几种检验中的哪一种为几种预测中的哪一种提供了证据来评估的。这种口头方法可能会错过定量模式。在本文中,我们开发了一种定量方法。我们首先将这些预测的各种测试分解为具有不同潜在偏差来源的独立因素。当许多这些证据因素支持预测时,对因果假设的支持得到加强。敏感性分析用于评估可能使检测结果不真实的潜在偏差。随着这种多参数灵敏度分析,我们考虑了部分连接的测试。这些部分连词量化了支持预测集合中不同部分的证据。部分连接测试包括对部分连接中的组件进行组合测试。在灵敏度分析的背景下,我们找到了测试的渐近最优组合。我们对因果假设的详细理论的分析控制了家庭误差率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Statistics
Annals of Statistics 数学-统计学与概率论
CiteScore
9.30
自引率
8.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信