APL Materials最新文献

筛选
英文 中文
Increasing terahertz spintronic emission with planar antennas 利用平面天线提高太赫兹自旋电子发射率
IF 6.1 2区 材料科学
APL Materials Pub Date : 2024-05-10 DOI: 10.1063/5.0200413
Matthias Pacé, Oleksandr Kovalenko, José Solano, Michel Hehn, Matthieu Bailleul, Mircea Vomir
{"title":"Increasing terahertz spintronic emission with planar antennas","authors":"Matthias Pacé, Oleksandr Kovalenko, José Solano, Michel Hehn, Matthieu Bailleul, Mircea Vomir","doi":"10.1063/5.0200413","DOIUrl":"https://doi.org/10.1063/5.0200413","url":null,"abstract":"Spintronic THz emitters, consisting of Ta/Co/Pt trilayers patterned into lateral-sized rectangles in the 10 μm range, have been integrated in planar electromagnetic antennas of various types (dipole, bow-tie, and spiral). The antenna dimensions and shapes have been optimized with the help of electromagnetic simulations so as to maximize antenna efficiency in both narrow-band and broadband geometries at/around 1 THz. The THz emission has been studied using a pump–probe free space electro-optic sampling setup, both for single-emitter geometry and for arrays of emitters. The results show an increase in the detected THz signal for all antenna geometries, with enhancement ratios in the range of three to fifteen, depending on the antenna type and frequency range, together with changes in the emission bandwidth consistent with simulated characteristics.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A silica nanobean carrier utilizing lysosomal and mitochondrial autophagy to kill ovarian cancer cell 利用溶酶体和线粒体自噬杀死卵巢癌细胞的二氧化硅纳米豆载体
IF 6.1 2区 材料科学
APL Materials Pub Date : 2024-05-10 DOI: 10.1063/5.0210252
Shi Tang, Qing Liu, Mingcheng Song, Xiangshuai Li, Degang Ji, Ying-Wei Yang, Huimei Yu
{"title":"A silica nanobean carrier utilizing lysosomal and mitochondrial autophagy to kill ovarian cancer cell","authors":"Shi Tang, Qing Liu, Mingcheng Song, Xiangshuai Li, Degang Ji, Ying-Wei Yang, Huimei Yu","doi":"10.1063/5.0210252","DOIUrl":"https://doi.org/10.1063/5.0210252","url":null,"abstract":"The development of responsive and smart drug nanocarriers that defeat the tumor microenvironment that resists cancer therapy has attracted considerable attention in recent decades. Upgrades are sought to effectively increase the therapeutic efficacy of chemotherapy drugs and reduce damage to normal tissues. In this study, a new type of silica nano-particle carrier, dual-functionalized mesoporous silica nanobeans (DF-MSNB), is used to encapsulate the drug, doxorubicin (DOX), to form the DOX@DF-MSNB complex. The complex simultaneously releases drugs and tracks drug uptake by cells after the environmentally triggered release of the encapsulated drug and fluorophore. Upon sensing the high GSH level and low pH in the tumor microenvironment, the disulfide bond breaks in the linker between the drug and the carrier. An attached fluorescent group is activated, and the DOX drug is released from the carrier. Our results show that DOX@DF-MSNB co-localizes with mitochondria and lysosomes in A2780 cells, enabling DOX to subvert the cells’ mitochondrial function and activate macrophage and mitochondrial autophagy. The application of a mitochondrial autophagy inhibitor confirms that DOX@DF-MSNB inhibits tumor development by activating mitochondrial autophagy.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural, optical, and electrical characterization of TiO2-doped yttria-stabilized zirconia electrolytes grown by atomic layer deposition 通过原子层沉积法生长的掺杂 TiO2 的钇稳定氧化锆电解质的结构、光学和电学特征
IF 6.1 2区 材料科学
APL Materials Pub Date : 2024-05-10 DOI: 10.1063/5.0205375
Jorge Luis Vazquez, Amin Bahrami, Carolina Bohórquez, Eduardo Blanco, Manuel Dominguez, Gerardo Soto, Kornelius Nielsch, Hugo Tiznado
{"title":"Structural, optical, and electrical characterization of TiO2-doped yttria-stabilized zirconia electrolytes grown by atomic layer deposition","authors":"Jorge Luis Vazquez, Amin Bahrami, Carolina Bohórquez, Eduardo Blanco, Manuel Dominguez, Gerardo Soto, Kornelius Nielsch, Hugo Tiznado","doi":"10.1063/5.0205375","DOIUrl":"https://doi.org/10.1063/5.0205375","url":null,"abstract":"Electrolyte material optimization is crucial for electrochemical energy storage devices. The specific composition and structure have an impact on conductivity and stability, both of which are essential for efficient device performance. The effects of controlled incorporation of TiO2 into a Yttria-Stabilized Zirconia (YSZ) electrolyte using the atomic layer deposition (ALD) technique are investigated in this study. The surface chemical composition analysis reveals variations in the Ti oxidation state and a decrease in the O/(Zr + Y + Ti) ratio as TiO2 concentration increases. The formation of acceptor states near the valence band is proposed to reduce the bandgap with the Fermi level. The structural properties indicate that as TiO2 concentration increases, surface homogeneity and crystallite size increase. The contact angle with water indicates a hydrophobic behavior influenced by surface morphology and potential oxygen vacancies. Finally, electrical properties, measured in Ru/TiO2-doped YSZ/Au capacitors operated at temperatures between 100 and 170 °C, showed that the TiO2 incorporation improved the ionic conductivity, decreased the activation energy for conductivity, and improved the capacitance of the cells. This study highlights the importance of the ALD technique in solid-state electrolyte engineering for specific applications, such as energy storage devices.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous pipe-stream self-assembly technology for preparation of high sphericity FOX-7/HMX energetic composite microspheres 制备高球形度 FOX-7/HMX 高能复合微球的连续管流自组装技术
IF 6.1 2区 材料科学
APL Materials Pub Date : 2024-05-09 DOI: 10.1063/5.0208981
Xiangyu Zhang, Jianquan Jing, Jiaoyang Liu, Liting Zhang, Leixin Qi, Chongwei An
{"title":"Continuous pipe-stream self-assembly technology for preparation of high sphericity FOX-7/HMX energetic composite microspheres","authors":"Xiangyu Zhang, Jianquan Jing, Jiaoyang Liu, Liting Zhang, Leixin Qi, Chongwei An","doi":"10.1063/5.0208981","DOIUrl":"https://doi.org/10.1063/5.0208981","url":null,"abstract":"The emphasis on producing high-energy and insensitive composite microspheres has increased in energetic materials. However, few methods are available for preparing good spherical and morphological composite microspheres. To produce composite microspheres that are both high-energy and safe, in this article, a continuous pipe-stream self-assembly device was constructed to produce FOX-7/HMX composite microspheres continuously and taking advantage of the principle that PVA and Tween-80 can reduce the surface tension of the microspheres in water. In comparison with the molding powders produced by the kneading way, the FOX-7/HMX composite microspheres prepared by this device had fewer surface defects, a denser structure, a more spherical shape, and a smaller range of particle sizes. The mechanical properties of the pressed columns were better, with maximum compressive strength and strain increased by 44.2% and 21.4%, respectively; and the flowability and bulk density were also improved to some extent (angle of repose: energetic microspheres vs kneading method molding powder, 26.6° vs 51.1°; bulk density: energetic microspheres vs kneading method molding powder, 0.522 vs 0.426 g/cm3). Mechanical sensitivity has also been significantly reduced. This article provides innovative ideas for preparing high-energy and insensitive composite microspheres using a continuous pipe-stream self-assembly device.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of bonding description and strain regulation on the conductive transition of Bi semimetal 键合描述和应变调节对双金属导电转变的影响
IF 6.1 2区 材料科学
APL Materials Pub Date : 2024-05-07 DOI: 10.1063/5.0206964
Xing-Yu Yang, Jia-Ying Cao, Xiao-hang Ma, Shi-Hao Ren, Yong-Li Liu, F. S. Meng, Yang Qi
{"title":"Effect of bonding description and strain regulation on the conductive transition of Bi semimetal","authors":"Xing-Yu Yang, Jia-Ying Cao, Xiao-hang Ma, Shi-Hao Ren, Yong-Li Liu, F. S. Meng, Yang Qi","doi":"10.1063/5.0206964","DOIUrl":"https://doi.org/10.1063/5.0206964","url":null,"abstract":"Due to the differences in the treatment methods of the electron–ion interaction and the critical strain mode of the transition from semimetals to semiconductors, the corresponding strain modulation mechanism in layered bismuth (Bi) crystals remains elusive. In this work, the effects of van der Waals (vdW) correction on the crystal structure and electrical properties of Bi in an equilibrium/strained state are comparatively studied based on the density functional theory. It is found that vdW corrections can better describe the layered crystal and bandgap structure of Bi under equilibrium/strain conditions. With the vdW modification, bismuth can be converted from a semimetal to a semiconductor within a small compression range that is experimentally available. This transition is induced by the transfer of the conduction band minimum and the valence band maximum and is related to the competition of the near-band edge energy state near the Fermi level of bismuth. The present results not only provide guidance for the accurate study of the crystal structure and electronic properties of complex model systems, such as Bi or Bi-based inherently nanostructured materials, but also reveal strain regulation mechanism of Bi and predict its potential application in the semiconductor electronic devices.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast state-selective tunneling in two-dimensional semiconductors with a phase- and amplitude-controlled THz-scanning tunneling microscope 用相位和振幅控制太赫兹扫描隧道显微镜观察二维半导体中的超快状态选择性隧道现象
IF 6.1 2区 材料科学
APL Materials Pub Date : 2024-05-07 DOI: 10.1063/5.0200845
L. Bobzien, J. Allerbeck, S. E. Ammerman, R. Torsi, J. A. Robinson, B. Schuler
{"title":"Ultrafast state-selective tunneling in two-dimensional semiconductors with a phase- and amplitude-controlled THz-scanning tunneling microscope","authors":"L. Bobzien, J. Allerbeck, S. E. Ammerman, R. Torsi, J. A. Robinson, B. Schuler","doi":"10.1063/5.0200845","DOIUrl":"https://doi.org/10.1063/5.0200845","url":null,"abstract":"THz-pulse driven scanning tunneling microscopy (THz-STM) enables access to the ultrafast quantum dynamics of low-dimensional material systems at simultaneous ultrafast temporal and atomic spatial resolution. State-selective tunneling requires precise amplitude and phase control of the THz pulses combined with quantitative near-field waveform characterization. Here, we employ our state-of-the-art THz-STM with multi-MHz repetition rates, efficient THz generation, and precisely tunable THz waveforms to investigate a single sulfur vacancy in monolayer MoS2. We demonstrate that 2D transition metal dichalcogenides (TMDs) are an ideal platform for near-field waveform sampling by THz cross-correlation. Furthermore, we determine the THz voltage via QEV scans, which measure the THz rectified charge Q as a function of THz field amplitude E and dc bias Vdc. Mapping the complex energy landscape of localized states with a resolution down to 0.01 electrons per pulse facilitates state-selective tunneling to the HOMO and LUMO orbitals of a charged sulfur vacancy.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural, morphological, optical, electrical, and magnetic properties of aluminum-doped CoxCa(0.90−x)Ni0.10Fe2O4 flexible substrate for visible to NIR spectra applications 用于可见光至近红外光谱应用的铝掺杂 CoxCa(0.90-x)Ni0.10Fe2O4 柔性衬底的结构、形态、光学、电学和磁学特性
IF 6.1 2区 材料科学
APL Materials Pub Date : 2024-05-07 DOI: 10.1063/5.0203785
Md. Bakey Billa, Mohammad Tariqul Islam, Touhidul Alam, Md. Shabiul Islam, Asraf Mohamed Moubark, Haitham Alsaif, Saleh Albadran, Ahmed Alzamil, Ahmed S. Alshammari
{"title":"Structural, morphological, optical, electrical, and magnetic properties of aluminum-doped CoxCa(0.90−x)Ni0.10Fe2O4 flexible substrate for visible to NIR spectra applications","authors":"Md. Bakey Billa, Mohammad Tariqul Islam, Touhidul Alam, Md. Shabiul Islam, Asraf Mohamed Moubark, Haitham Alsaif, Saleh Albadran, Ahmed Alzamil, Ahmed S. Alshammari","doi":"10.1063/5.0203785","DOIUrl":"https://doi.org/10.1063/5.0203785","url":null,"abstract":"This paper presents a conductive component tailored to a flexible substrate using Al-doped CoxCa(0.90−x)Ni0.10Fe2O4 (x = 0.25, 0.50, and 0.75) for visible to near-infrared (NIR) spectra in magneto-optical applications. The developed nanoparticles show uniformity, nanosized grains, and capillary nanopore fusion characteristics, which are confirmed by x-ray diffraction (XRD), field emission scanning electron microscopy, and energy-dispersive x-ray spectroscopy analyses, respectively. The XRD analysis revealed crystallite sizes of 33.36, 37.08, and 44.25 nm and particle sizes of 45.6, 34.6, and 31.5 nm for the compositions x = 0.25, 0.50, and 0.75, respectively. The Al-doped nanoparticles are converted to a flexible solid substrate utilizing a polyvinyl alcohol matrix, facilitating conformality to build complex shapes and broadening their application scope. The structure shows higher absorption across 450–720 nm, 480–720 nm, and 200–850 nm spectra for x = 0.25, 0.50, and 0.75, respectively. The distinctive magnetic and electrical properties are also evaluated through magnetic force microscopy and conductive atomic force microscopy, culminating in a substrate with exceptional control over light–matter interactions with smooth surfaces with lower surface roughness. The vibrating sample magnetometer analysis of the substrate shows how varying cobalt content affects magnetic properties relevant for visible to near-infrared (NIR) applications, offering insights into coercivity, magnetization, and retentivity changes at different x values. The perceptible novelties of this work are advancements in material sciences aimed at enhancing light manipulation and flexibility for electronic devices.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nature-inspired wood-like TPU/CB aerogels for high performance flexible strain sensors 灵感源自大自然的仿木热塑性聚氨酯/CB 气凝胶用于高性能柔性应变传感器
IF 6.1 2区 材料科学
APL Materials Pub Date : 2024-05-07 DOI: 10.1063/5.0205597
Guanyu Wang, Yadong Yang, Wenzhe Cao, Caichao Wan
{"title":"Nature-inspired wood-like TPU/CB aerogels for high performance flexible strain sensors","authors":"Guanyu Wang, Yadong Yang, Wenzhe Cao, Caichao Wan","doi":"10.1063/5.0205597","DOIUrl":"https://doi.org/10.1063/5.0205597","url":null,"abstract":"Strain sensors based on porous conductive polymers (CPCs) have garnered growing research interest for their potential applications in motion detection, healthcare, human–computer interaction, and artificial intelligence. However, the complexity of CPC processing makes it difficult to achieve the controlled design of microscopic porous structures, leading to simple and random porous structures, thus limiting their further use in the field of pressure sensing. This paper presents a strain sensor with a high-performance, wood-like structure composed of flexible conductive carbon black/plastic polyurethane foam (BWCT) using a bidirectional freeze casting process. The results show that, compared with conventional random freezing and unidirectional freezing, the bidirectional freeze casting process can effectively realize multiscale control of the composite structure, which results in a good laminar porous structure of the prepared BWCT. This parallel laminar structure not only contributes to the layered transfer of stresses but also avoids the local concentration of stresses. At the same time, it significantly increases the directional electrical conduction ability, which results in high sensing stability performance. In particular, the BWCT sensors had a wide detection range (80%), a lower limit of detection (0.2%), rapid response and relaxation times (200 ms), as well as exceptional durability (>2000 cycles). Furthermore, the BWCT was integrated into a wearable sensor to monitor various human motions, including arm bending, squatting, and walking, demonstrating reliable detection performance. Altogether, the BWCT sensors are promising in expanding the application but also offer guidance for designing high-performance wearable strain sensors.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying the large contribution from orbital Rashba–Edelstein effect to the effective damping-like torque on magnetization 量化轨道拉什巴-爱德斯坦效应对磁化有效阻尼扭矩的巨大贡献
IF 6.1 2区 材料科学
APL Materials Pub Date : 2024-05-07 DOI: 10.1063/5.0198970
S. Krishnia, B. Bony, E. Rongione, L. Moreno Vicente-Arche, T. Denneulin, A. Pezo, Y. Lu, R. E. Dunin-Borkowski, S. Collin, A. Fert, J.-M. George, N. Reyren, V. Cros, H. Jaffrès
{"title":"Quantifying the large contribution from orbital Rashba–Edelstein effect to the effective damping-like torque on magnetization","authors":"S. Krishnia, B. Bony, E. Rongione, L. Moreno Vicente-Arche, T. Denneulin, A. Pezo, Y. Lu, R. E. Dunin-Borkowski, S. Collin, A. Fert, J.-M. George, N. Reyren, V. Cros, H. Jaffrès","doi":"10.1063/5.0198970","DOIUrl":"https://doi.org/10.1063/5.0198970","url":null,"abstract":"The generation of large spin currents, and the associated spin torques, which are at the heart of modern spintronics, has long been achieved by charge-to-spin conversion mechanisms, i.e., the spin Hall effect and/or the Rashba–Edelstein effect, intrinsically linked to strong spin–orbit coupling. Recently, a novel path has been predicted and observed for achieving significant current-induced torques originating from light elements, hence possessing weak spin–orbit interaction. These findings point out to the potential involvement of the orbital counterpart of electrons, namely the orbital Hall and orbital Rashba–Edelstein effects. In this study, we aim at quantifying these orbital-related contributions to the effective torques acting on a thin Co layer in different systems. First, we demonstrate in Pt|Co|Cu|AlOx stacking a comparable torque strength coming from the conversion due to the orbital Rashba–Edelstein effect at the Cu|AlOx interface and the one from the effective spin Hall effect in the bottom Pt|Co system. Second, in order to amplify the orbital-to-spin conversion, we investigate the impact of an intermediate Pt layer in Co|Pt|Cu|CuOx. From the Pt thickness dependence of the effective torques determined by harmonic Hall measurements complemented by spin Hall magneto-resistance and THz spectroscopy experiments, we demonstrate that a large orbital Rashba–Edelstein effect is present at the Cu|CuOx interface, leading to a twofold enhancement of the net torques on Co for the optimal Pt thickness. Our findings not only demonstrate the crucial role that orbital currents can play in low-dimensional systems with weak spin–orbit coupling but also reveal that they enable more energy efficient manipulation of magnetization in spintronic devices.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-dimensional electron gases in AlYN/GaN heterostructures grown by metal–organic chemical vapor deposition 金属有机化学气相沉积法生长的 AlYN/GaN 异质结构中的二维电子气体
IF 6.1 2区 材料科学
APL Materials Pub Date : 2024-05-07 DOI: 10.1063/5.0203156
Isabel Streicher, Patrik Straňák, Lutz Kirste, Mario Prescher, Stefan Müller, Stefano Leone
{"title":"Two-dimensional electron gases in AlYN/GaN heterostructures grown by metal–organic chemical vapor deposition","authors":"Isabel Streicher, Patrik Straňák, Lutz Kirste, Mario Prescher, Stefan Müller, Stefano Leone","doi":"10.1063/5.0203156","DOIUrl":"https://doi.org/10.1063/5.0203156","url":null,"abstract":"Wurtzite AlN alloyed with group 3 elements Sc and Y boosts the performance of GaN-based high-electron-mobility transistors (HEMTs) significantly as they increase the spontaneous polarization of the barrier layer and, thus, enhance the charge carrier density ns in the two-dimensional electron gas (2DEG) formed at the interface with the GaN channel. The emerging nitride Al1−xYxN additionally features an a lattice parameter matching to that of GaN at x = 0.07–0.11, allowing for the growth of strain-free barriers. Here, we demonstrate the growth of Al1−xYxN/GaN heterostructures for HEMTs by metal–organic chemical vapor deposition for the first time. The effect of the Y concentrations on the 2DEG is investigated in a Y concentration range from 3% to 15%. At 8% Y, a record mobility of 3200 cm2/(Vs) was measured at a low temperature (7 K). Room and low-temperature ns was at 1–2 × 1013 cm−2. Al0.92Y0.08N barriers were coherently strained to the GaN channel for barrier thicknesses from 5 to 15 nm. Finally, the deposition of Al1−xYxN/GaN heterostructures deposited on 4″ 4H–SiC wafers had a room-temperature mobility close to 1400 cm2/(Vs). AlYN/GaN heterostructures may offer advantages over AlScN/GaN heterostructures not only for the lower price and higher abundance of the raw material but also in terms of electrical characteristics and may be more suitable for power amplifying applications due to increased electron mobility.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信