Dianxiang Ji, Yi Zhang, Wei Mao, Min Gu, Yiping Xiao, Yang Yang, Wei Guo, Zhengbin Gu, Jian Zhou, Peng Wang, Yuefeng Nie, Xiaoqing Pan
{"title":"带电非相干 BiFeO3/SrTiO3 界面工程学","authors":"Dianxiang Ji, Yi Zhang, Wei Mao, Min Gu, Yiping Xiao, Yang Yang, Wei Guo, Zhengbin Gu, Jian Zhou, Peng Wang, Yuefeng Nie, Xiaoqing Pan","doi":"10.1063/5.0203518","DOIUrl":null,"url":null,"abstract":"Atomic-level control of complex oxide heterostructure interfaces has resulted in unprecedented properties and functionalities. The majority of oxide heterointerfaces being intensively investigated maintain lattice coherence and exhibit a flawless epitaxial alignment between the films and the substrates. Here, we report the engineering of a charged incoherent BiFeO3/SrTiO3 interface using a tailored deposition sequence in reactive oxide molecular beam epitaxy. By introducing an additional iron oxide layer to disrupt the lattice coherence at the interface, the overlying BiFeO3 is stabilized in a tetragonal phase with its enhanced ferroelectric polarization pointing toward the SrTiO3 substrate, which drives free electrons to accumulate at the incoherent interface. Our findings reveal how controlling lattice coherence at oxide heterointerfaces can open new avenues for fabricating artificial oxide heterostructures with unique properties through precise interface engineering.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"30 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering of a charged incoherent BiFeO3/SrTiO3 interface\",\"authors\":\"Dianxiang Ji, Yi Zhang, Wei Mao, Min Gu, Yiping Xiao, Yang Yang, Wei Guo, Zhengbin Gu, Jian Zhou, Peng Wang, Yuefeng Nie, Xiaoqing Pan\",\"doi\":\"10.1063/5.0203518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atomic-level control of complex oxide heterostructure interfaces has resulted in unprecedented properties and functionalities. The majority of oxide heterointerfaces being intensively investigated maintain lattice coherence and exhibit a flawless epitaxial alignment between the films and the substrates. Here, we report the engineering of a charged incoherent BiFeO3/SrTiO3 interface using a tailored deposition sequence in reactive oxide molecular beam epitaxy. By introducing an additional iron oxide layer to disrupt the lattice coherence at the interface, the overlying BiFeO3 is stabilized in a tetragonal phase with its enhanced ferroelectric polarization pointing toward the SrTiO3 substrate, which drives free electrons to accumulate at the incoherent interface. Our findings reveal how controlling lattice coherence at oxide heterointerfaces can open new avenues for fabricating artificial oxide heterostructures with unique properties through precise interface engineering.\",\"PeriodicalId\":7985,\"journal\":{\"name\":\"APL Materials\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0203518\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0203518","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Engineering of a charged incoherent BiFeO3/SrTiO3 interface
Atomic-level control of complex oxide heterostructure interfaces has resulted in unprecedented properties and functionalities. The majority of oxide heterointerfaces being intensively investigated maintain lattice coherence and exhibit a flawless epitaxial alignment between the films and the substrates. Here, we report the engineering of a charged incoherent BiFeO3/SrTiO3 interface using a tailored deposition sequence in reactive oxide molecular beam epitaxy. By introducing an additional iron oxide layer to disrupt the lattice coherence at the interface, the overlying BiFeO3 is stabilized in a tetragonal phase with its enhanced ferroelectric polarization pointing toward the SrTiO3 substrate, which drives free electrons to accumulate at the incoherent interface. Our findings reveal how controlling lattice coherence at oxide heterointerfaces can open new avenues for fabricating artificial oxide heterostructures with unique properties through precise interface engineering.
期刊介绍:
APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications.
In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.