Annual review of physical chemistry最新文献

筛选
英文 中文
Physical Considerations in Memory and Information Storage. 内存和信息存储中的物理考虑。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-02-14 DOI: 10.1146/annurev-physchem-083122-010308
Matthew Du, Agnish Kumar Behera, Suriyanarayanan Vaikuntanathan
{"title":"Physical Considerations in Memory and Information Storage.","authors":"Matthew Du, Agnish Kumar Behera, Suriyanarayanan Vaikuntanathan","doi":"10.1146/annurev-physchem-083122-010308","DOIUrl":"https://doi.org/10.1146/annurev-physchem-083122-010308","url":null,"abstract":"<p><p>Information is an important resource. Storing and retrieving information faithfully are huge challenges and many methods have been developed to understand the principles behind robust information processing. In this review, we focus on information storage and retrieval from the perspective of energetics, dynamics, and statistical mechanics. We first review the Hopfield model of associative memory, the classic energy-based model of memory. We then discuss generalizations and physical realizations of the Hopfield model. Finally, we highlight connections to energy-based neural networks used in deep learning. We hope this review inspires new directions along the lines of information storage and retrieval in physical systems.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chirality-Induced Spin Selectivity in Hybrid Organic-Inorganic Perovskite Semiconductors. 手性诱导的杂化有机-无机钙钛矿半导体的自旋选择性。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-02-14 DOI: 10.1146/annurev-physchem-082423-032933
Yifan Dong, Matthew P Hautzinger, Md Azimul Haque, Matthew C Beard
{"title":"Chirality-Induced Spin Selectivity in Hybrid Organic-Inorganic Perovskite Semiconductors.","authors":"Yifan Dong, Matthew P Hautzinger, Md Azimul Haque, Matthew C Beard","doi":"10.1146/annurev-physchem-082423-032933","DOIUrl":"https://doi.org/10.1146/annurev-physchem-082423-032933","url":null,"abstract":"<p><p>The movement of charges through a chiral medium results in a spin-polarized charge current. This phenomenon, known as the chirality-induced spin selectivity (CISS) effect, enables control over spin populations without the need for magnetic components and operates at room temperature. CISS has been discovered in a range of chiral media and most prominently studied in chiral organic molecular species. Chiral hybrid organic-inorganic perovskite semiconductors combine the unique and functional aspects of inorganic semiconductors with chiral molecules. The inorganic component borrows the homochirality of the organic component to yield a unique family of highly tunable chiral semiconductors, where the enantiomeric purity is defined by the organic component. Semiconductors already form the backbone of modern-day technologies. Adding chirality and control over spin through CISS provides new avenues for creative technological development. This review is intended to be an introduction to these unique systems and the demonstrations of CISS and spin control.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure-Photophysical Property Relationships in Noncanonical and Synthetic Nucleobases. 非规范和合成核碱基的结构-光物理性质关系。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-02-14 DOI: 10.1146/annurev-physchem-082423-022427
Sean J Hoehn, Sarah E Krul, Sourav Kanti Seth, Carlos E Crespo-Hernández
{"title":"Structure-Photophysical Property Relationships in Noncanonical and Synthetic Nucleobases.","authors":"Sean J Hoehn, Sarah E Krul, Sourav Kanti Seth, Carlos E Crespo-Hernández","doi":"10.1146/annurev-physchem-082423-022427","DOIUrl":"https://doi.org/10.1146/annurev-physchem-082423-022427","url":null,"abstract":"<p><p>This review provides a focused coverage of the photophysical properties of noncanonical and synthetic nucleobases reported over the past decade. It emphasizes key research findings and physical insights gathered for prebiotic and fluorescent nucleobase analogs, sulfur- and selenium-substituted nucleobases, aza-substituted nucleobases, epigenetic nucleobases and their oxidation products, and nucleobases utilized for expanding DNA/RNA to reveal central structure-photophysical property relationships. Further research and development in this emerging field, coupled with machine learning methods, will enable the effective harnessing of nucleobases' modifications for applications in biotechnology, biomedicine, therapeutics, and even the creation of live semisynthetic organisms.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Mechanisms of Metal-Catalyzed RNA and DNA Modifications. 金属催化RNA和DNA修饰的新机制。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-02-14 DOI: 10.1146/annurev-physchem-082423-030241
Mohd Ahsan, Chinmai Pindi, Giulia Palermo
{"title":"Emerging Mechanisms of Metal-Catalyzed RNA and DNA Modifications.","authors":"Mohd Ahsan, Chinmai Pindi, Giulia Palermo","doi":"10.1146/annurev-physchem-082423-030241","DOIUrl":"https://doi.org/10.1146/annurev-physchem-082423-030241","url":null,"abstract":"<p><p>Metal ions play a critical role in various chemical, biological, and environmental processes. This review reports on emerging chemical mechanisms in the catalysis of DNA and RNA. We provide an overview of the metal-dependent mechanisms of DNA cleavage in CRISPR (clustered regularly interspaced short palindromic repeats)-Cas systems that are transforming life sciences through genome editing technologies, and showcase intriguing metal-dependent mechanisms of RNA cleavages. We show that newly discovered CRISPR-Cas complexes operate as protein-assisted ribozymes, highlighting RNA's versatility and the enhancement of CRISPR-Cas functions through strategic metal ion use. We demonstrate the power of computer simulations in observing chemical processes as they unfold and in advancing structural biology through innovative approaches for refining cryo-electron microscopy maps. Understanding metal ion involvement in nucleic acid catalysis is crucial for advancing genome editing, aiding therapeutic interventions for genetic disorders, and improving the editing tools' specificity and efficiency.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum State-Resolved Structure and Dynamics of C60 Fullerenes. 量子态分辨的 C60 富勒烯结构与动力学。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-02-04 DOI: 10.1146/annurev-physchem-082423-013137
Lee R Liu, Jun Ye
{"title":"Quantum State-Resolved Structure and Dynamics of C<sub>60</sub> Fullerenes.","authors":"Lee R Liu, Jun Ye","doi":"10.1146/annurev-physchem-082423-013137","DOIUrl":"https://doi.org/10.1146/annurev-physchem-082423-013137","url":null,"abstract":"<p><p>The C<sub>60</sub> fullerene molecule has been the subject of intense study for four decades, starting with its identification in the mass spectra of carbon soot in 1985. In this review, we focus on the achievement of ultra-high-resolution spectroscopy of gas phase neutral C<sub>60</sub>, heralded by the observation of quantum state-resolved infrared spectra in 2019. C<sub>60</sub> is now the largest and most symmetric molecule for which rovibrational quantum state resolution has been achieved, motivating the use of large molecules for studying complex quantum systems with symmetries and degrees of freedom not readily available in other composite systems. We discuss the theory, challenges, and experimental techniques of high-resolution C<sub>60</sub> spectroscopy and recent experimental results probing the structure, dynamics, and interactions of C<sub>60</sub> enabled by quantum state resolution.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reaction Coordinates Are Optimal Channels of Energy Flow. 反应坐标是能量流动的最佳通道。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-02-04 DOI: 10.1146/annurev-physchem-082423-010652
Ao Ma, Huiyu Li
{"title":"Reaction Coordinates Are Optimal Channels of Energy Flow.","authors":"Ao Ma, Huiyu Li","doi":"10.1146/annurev-physchem-082423-010652","DOIUrl":"10.1146/annurev-physchem-082423-010652","url":null,"abstract":"<p><p>Reaction coordinates (RCs) are the few essential coordinates of a protein that control its functional processes, such as allostery, enzymatic reaction, and conformational change. They are critical for understanding protein function and provide optimal enhanced sampling of protein conformational changes and states. Since the pioneering work in the late 1990s, identifying the correct and objectively provable RCs has been a central topic in molecular biophysics and chemical physics. This review summarizes the major advances in identifying RCs over the past 25 years, focusing on methods aimed at finding RCs that meet the rigorous committor criterion, widely accepted as the true RCs. Importantly, the newly developed physics-based energy flow theory and generalized work functional method provide a general and rigorous approach for identifying true RCs, revealing their physical nature as the optimal channels of energy flow in biomolecules.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Dynamics Simulations of the Interactions of Organic Compounds at Indoor Relevant Surfaces. 室内相关表面有机化合物相互作用的分子动力学模拟。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-02-03 DOI: 10.1146/annurev-physchem-083122-123017
Michael von Domaros, Douglas J Tobias
{"title":"Molecular Dynamics Simulations of the Interactions of Organic Compounds at Indoor Relevant Surfaces.","authors":"Michael von Domaros, Douglas J Tobias","doi":"10.1146/annurev-physchem-083122-123017","DOIUrl":"https://doi.org/10.1146/annurev-physchem-083122-123017","url":null,"abstract":"<p><p>With markedly different reaction conditions compared to the chemistry of the outside atmosphere, indoor air chemistry poses new challenges to the scientific community that require combined experimental and computational efforts. Here, we review molecular dynamics simulations that have contributed to the mechanistic understanding of the complex dynamics of organic compounds at indoor surfaces and their interplay with experiments and indoor air models. We highlight the rich interactions between volatile organic compounds and silica and titanium dioxide surfaces, serving as proxies for glasses and paints, as well as the dynamics of skin oil lipids and their oxidation products, which sensitively affect the quality of indoor air in crowded environments. As the studies we review here are pioneering in the rapidly emerging field of indoor chemistry, we provide suggestions for increasing the potentially important role that molecular simulations can continue to play.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143121999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Merging Vibrational Spectroscopy with Fluorescence Microscopy: Combining the Best of Two Worlds. 振动光谱与荧光显微镜的结合:结合两个世界的精华。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-02-03 DOI: 10.1146/annurev-physchem-082423-121033
Naixin Qian, Hanqing Xiong, Lu Wei, Lixue Shi, Wei Min
{"title":"Merging Vibrational Spectroscopy with Fluorescence Microscopy: Combining the Best of Two Worlds.","authors":"Naixin Qian, Hanqing Xiong, Lu Wei, Lixue Shi, Wei Min","doi":"10.1146/annurev-physchem-082423-121033","DOIUrl":"https://doi.org/10.1146/annurev-physchem-082423-121033","url":null,"abstract":"<p><p>Vibrational spectroscopy and fluorescence spectroscopy have historically been two established but separate fields of molecular spectroscopy. While vibrational spectroscopy provides exquisite chemical information, fluorescence spectroscopy often offers orders of magnitude higher detection sensitivity. However, they each lack the advantages of each other. In recent years, a series of novel nonlinear optical spectroscopy studies have been developed that merge both spectroscopies into a single double-resonance process. These techniques combine the chemical specificity of Raman or infrared (IR) spectroscopy with the superb detection sensitivity and spatial resolution of fluorescence microscopy. Many facets have been explored, including Raman transition versus IR transition, time domain versus frequency domain, and spectroscopy versus microscopy. Notably, single-molecule vibrational spectroscopy has been achieved at room temperature without the need for plasmonics. Even super-resolution vibrational imaging beyond the diffraction limit was demonstrated. This review summarizes the growing field of vibrational-encoded fluorescence microscopy, including key technical developments, emerging applications, and future prospects.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143121998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast Spectroscopy and Dynamics of Photoredox Catalysis. 光氧化催化的超快光谱学和动力学。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-02-03 DOI: 10.1146/annurev-physchem-082423-013952
John D Sakizadeh, Rachel Weiss, Gregory D Scholes, Bryan Kudisch
{"title":"Ultrafast Spectroscopy and Dynamics of Photoredox Catalysis.","authors":"John D Sakizadeh, Rachel Weiss, Gregory D Scholes, Bryan Kudisch","doi":"10.1146/annurev-physchem-082423-013952","DOIUrl":"https://doi.org/10.1146/annurev-physchem-082423-013952","url":null,"abstract":"<p><p>Photoredox catalysis has emerged as a powerful platform for chemical synthesis, utilizing chromophore excited states as selective energy stores to surmount chemical activation barriers toward making desirable products. Developments in this field have pushed synthetic chemists to design and discover new photocatalysts with novel and impactful photoreactivity but also with uncharacterized excited states and only an approximate mechanistic understanding. This review highlights specific instances in which ultrafast spectroscopies dissected the photophysical and photochemical dynamics of new classes of photoredox catalysts and their photochemical reactions. After briefly introducing the photophysical processes and ultrafast spectroscopic methods central to this topic, the review describes selected recent examples that evoke distinct classes of photoredox catalysts with demonstrated synthetic utility and ultrafast spectroscopic characterization. This review cements the significant role of ultrafast spectroscopy in modern photocatalyzed organic transformations and institutionalizes the developing intersection of synthetic organic chemistry and physical chemistry.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143122001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electric Fields at Solid-Liquid Interfaces: Insights from Molecular Dynamics Simulation. 固-液界面的电场:分子动力学模拟的启示。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-02-03 DOI: 10.1146/annurev-physchem-082820-112101
Julia A Nauman, Dylan Suvlu, Adam P Willard
{"title":"Electric Fields at Solid-Liquid Interfaces: Insights from Molecular Dynamics Simulation.","authors":"Julia A Nauman, Dylan Suvlu, Adam P Willard","doi":"10.1146/annurev-physchem-082820-112101","DOIUrl":"https://doi.org/10.1146/annurev-physchem-082820-112101","url":null,"abstract":"<p><p>In this review, we explore the electrostatic environment of the interface between a solid and dilute electrolyte solution, with an emphasis on the electric field profiles that these systems produce. We review the theoretical formalism that connects electrostatic potential profiles, electric field profiles, and charge density fields. This formalism has served as the basis for our understanding of interfacial electric fields and their influences on microscopic chemical and physical processes. Comparing various traditional models of interfacial electrostatics to the results of molecular dynamics (MD) simulation yields mutually inconsistent descriptions of the interfacial electric field profile. We present MD simulation results demonstrating that the average electric field profiles experienced by particles at the interface differ from the properties of traditional models and from the fields derived from the mean charge density of atomistic simulations. Furthermore, these experienced electric field profiles are species-dependent. Based on these results, we assert that a single unifying electrostatic potential profile-the gradient of which defines a single unifying electric field profile-cannot correctly predict the electrostatic forces that act on species at the interface.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143121995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信