Annual review of physical chemistry最新文献

筛选
英文 中文
Lipid Landscapes: Vibrational Spectroscopy for Decoding Membrane Complexity. 脂质景观:用于解码膜复杂性的振动光谱学。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2024-06-01 Epub Date: 2024-06-14 DOI: 10.1146/annurev-physchem-090722-010230
Xiaobing Chen, Ziareena A Al-Mualem, Carlos R Baiz
{"title":"Lipid Landscapes: Vibrational Spectroscopy for Decoding Membrane Complexity.","authors":"Xiaobing Chen, Ziareena A Al-Mualem, Carlos R Baiz","doi":"10.1146/annurev-physchem-090722-010230","DOIUrl":"10.1146/annurev-physchem-090722-010230","url":null,"abstract":"<p><p>Cell membranes are incredibly complex environments containing hundreds of components. Despite substantial advances in the past decade, fundamental questions related to lipid-lipid interactions and heterogeneity persist. This review explores the complexity of lipid membranes, showcasing recent advances in vibrational spectroscopy to characterize the structure, dynamics, and interactions at the membrane interface. We include an overview of modern techniques such as surface-enhanced infrared spectroscopy as a steady-state technique with single-bilayer sensitivity, two-dimensional sum-frequency generation spectroscopy, and two-dimensional infrared spectroscopy to measure time-evolving structures and dynamics with femtosecond time resolution. Furthermore, we discuss the potential of multiscale molecular dynamics (MD) simulations, focusing on recently developed simulation algorithms, which have emerged as a powerful approach to interpret complex spectra. We highlight the ongoing challenges in studying heterogeneous environments in multicomponent membranes via current vibrational spectroscopic techniques and MD simulations. Overall, this review provides an up-to-date comprehensive overview of the powerful combination of vibrational spectroscopy and simulations, which has great potential to illuminate lipid-lipid, lipid-protein, and lipid-water interactions in the intricate conformational landscape of cell membranes.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139929657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-Molecule Spectroscopy and Super-Resolution Mapping of Physicochemical Parameters in Living Cells. 活细胞中物理化学参数的单分子光谱和超分辨率绘图。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2024-06-01 Epub Date: 2024-06-14 DOI: 10.1146/annurev-physchem-070623-034225
Megan A Steves, Changdong He, Ke Xu
{"title":"Single-Molecule Spectroscopy and Super-Resolution Mapping of Physicochemical Parameters in Living Cells.","authors":"Megan A Steves, Changdong He, Ke Xu","doi":"10.1146/annurev-physchem-070623-034225","DOIUrl":"10.1146/annurev-physchem-070623-034225","url":null,"abstract":"<p><p>By superlocalizing the positions of millions of single molecules over many camera frames, a class of super-resolution fluorescence microscopy methods known as single-molecule localization microscopy (SMLM) has revolutionized how we understand subcellular structures over the past decade. In this review, we highlight emerging studies that transcend the outstanding structural (shape) information offered by SMLM to extract and map physicochemical parameters in living mammalian cells at single-molecule and super-resolution levels. By encoding/decoding high-dimensional information-such as emission and excitation spectra, motion, polarization, fluorescence lifetime, and beyond-for every molecule, and mass accumulating these measurements for millions of molecules, such multidimensional and multifunctional super-resolution approaches open new windows into intracellular architectures and dynamics, as well as their underlying biophysical rules, far beyond the diffraction limit.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning of Reactive Potentials. 反应电位的机器学习。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2024-06-01 DOI: 10.1146/annurev-physchem-062123-024417
Yinuo Yang, Shuhao Zhang, Kavindri D Ranasinghe, Olexandr Isayev, Adrian E Roitberg
{"title":"Machine Learning of Reactive Potentials.","authors":"Yinuo Yang, Shuhao Zhang, Kavindri D Ranasinghe, Olexandr Isayev, Adrian E Roitberg","doi":"10.1146/annurev-physchem-062123-024417","DOIUrl":"10.1146/annurev-physchem-062123-024417","url":null,"abstract":"<p><p>In the past two decades, machine learning potentials (MLPs) have driven significant developments in chemical, biological, and material sciences. The construction and training of MLPs enable fast and accurate simulations and analysis of thermodynamic and kinetic properties. This review focuses on the application of MLPs to reaction systems with consideration of bond breaking and formation. We review the development of MLP models, primarily with neural network and kernel-based algorithms, and recent applications of reactive MLPs (RMLPs) to systems at different scales. We show how RMLPs are constructed, how they speed up the calculation of reactive dynamics, and how they facilitate the study of reaction trajectories, reaction rates, free energy calculations, and many other calculations. Different data sampling strategies applied in building RMLPs are also discussed with a focus on how to collect structures for rare events and how to further improve their performance with active learning.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multielectron Dynamics in the Condensed Phase: Quantum Structure-Function Relationships. 凝聚相中的多电子动力学:量子结构-功能关系
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2024-06-01 DOI: 10.1146/annurev-physchem-042018-052515
Joel D Eaves
{"title":"Multielectron Dynamics in the Condensed Phase: Quantum Structure-Function Relationships.","authors":"Joel D Eaves","doi":"10.1146/annurev-physchem-042018-052515","DOIUrl":"10.1146/annurev-physchem-042018-052515","url":null,"abstract":"<p><p>Quantum information promises dramatic advances in computing last seen in the digital revolution, but quantum hardware is fragile, noisy, and resource intensive. Chemistry has a role in developing new materials for quantum information that are robust to noise, scalable, and operable in ambient conditions. While molecular structure is the foundation for understanding mechanism and reactivity, molecular structure/quantum function relationships remain mostly undiscovered. Using singlet fission as a specific example of a multielectron process capable of producing long-lived spin-entangled electronic states at high temperatures, I describe how to exploit molecular structure and symmetry to gain quantum function and how some principles learned from singlet fission apply more broadly to quantum science.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectroscopy in Nanoscopic Cavities: Models and Recent Experiments. 纳米空腔中的光谱学:模型与最新实验
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2024-06-01 DOI: 10.1146/annurev-physchem-083122-125525
Marc R Bourgeois, Feng Pan, C Praise Anyanwu, Austin G Nixon, Elliot K Beutler, Jennifer A Dionne, Randall H Goldsmith, David J Masiello
{"title":"Spectroscopy in Nanoscopic Cavities: Models and Recent Experiments.","authors":"Marc R Bourgeois, Feng Pan, C Praise Anyanwu, Austin G Nixon, Elliot K Beutler, Jennifer A Dionne, Randall H Goldsmith, David J Masiello","doi":"10.1146/annurev-physchem-083122-125525","DOIUrl":"10.1146/annurev-physchem-083122-125525","url":null,"abstract":"<p><p>The ability of nanophotonic cavities to confine and store light to nanoscale dimensions has important implications for enhancing molecular, excitonic, phononic, and plasmonic optical responses. Spectroscopic signatures of processes that are ordinarily exceedingly weak such as pure absorption and Raman scattering have been brought to the single-particle limit of detection, while new emergent polaritonic states of optical matter have been realized through coupling material and photonic cavity degrees of freedom across a wide range of experimentally accessible interaction strengths. In this review, we discuss both optical and electron beam spectroscopies of cavity-coupled material systems in weak, strong, and ultrastrong coupling regimes, providing a theoretical basis for understanding the physics inherent to each while highlighting recent experimental advances and exciting future directions.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of Anions: From Bound to Unbound States and Everything In Between. 阴离子动力学:从结合态到非结合态以及两者之间的一切。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2024-06-01 Epub Date: 2024-06-14 DOI: 10.1146/annurev-physchem-090722-125031
Connor J Clarke, Jan R R Verlet
{"title":"Dynamics of Anions: From Bound to Unbound States and Everything In Between.","authors":"Connor J Clarke, Jan R R Verlet","doi":"10.1146/annurev-physchem-090722-125031","DOIUrl":"10.1146/annurev-physchem-090722-125031","url":null,"abstract":"<p><p>Gas-phase anions present an ideal playground for the exploration of excited-state dynamics. They offer control in terms of the mass, extent of solvation, internal temperature, and conformation. The application of a range of ion sources has opened the field to a vast array of anionic systems whose dynamics are important in areas ranging from biology to star formation. Here, we review recent experimental developments in the field of anion photodynamics, demonstrating the detailed insight into photodynamical and electron-capture processes that can be uncovered. We consider the electronic and nuclear ultrafast dynamics of electronically bound excited states along entire reaction coordinates; electronically unbound states showing that photochemical concepts, such as chromophores and Kasha's rule, are transferable to electron-driven chemistry; and nonvalence states that straddle the interface between bound and unbound states. Finally, we consider likely developments that are sure to keep the field of anion dynamics buoyant and impactful.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139566199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prebiotic Astrochemistry from Astronomical Observations and Laboratory Spectroscopy. 从天文观测和实验室光谱学看前生物天体化学。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2024-06-01 Epub Date: 2024-06-14 DOI: 10.1146/annurev-physchem-090722-010849
Lucy M Ziurys
{"title":"Prebiotic Astrochemistry from Astronomical Observations and Laboratory Spectroscopy.","authors":"Lucy M Ziurys","doi":"10.1146/annurev-physchem-090722-010849","DOIUrl":"10.1146/annurev-physchem-090722-010849","url":null,"abstract":"<p><p>The discovery of more than 200 gas-phase chemical compounds in interstellar space has led to the speculation that this nonterrestrial synthesis may play a role in the origin of life. These identifications were possible because of laboratory spectroscopy, which provides the molecular fingerprints for astronomical observations. Interstellar chemistry produces a wide range of small, organic molecules in dense clouds, such as NH<sub>2</sub>COCH<sub>3</sub>, CH<sub>3</sub>OCH<sub>3</sub>, CH<sub>3</sub>COOCH<sub>3</sub>, and CH<sub>2</sub>(OH)CHO. Carbon (C) is also carried in the fullerenes C<sub>60</sub> and C<sub>70</sub>, which can preserve C-C bonds from circumstellar environments for future synthesis. Elusive phosphorus has now been found in molecular clouds, the sites of star formation, in the molecules PO and PN. Such clouds can collapse into solar systems, although the chemical/physical processing of the emerging planetary disk is uncertain. The presence of molecule-rich interstellar starting material, as well as the link to planetary bodies such as meteorites and comets, suggests that astrochemical processes set a prebiotic foundation.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139929661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding Organic Photovoltaic Materials Using Simple Thermal Analysis Methodologies. 利用简单的热分析方法了解有机光伏材料。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2024-06-01 Epub Date: 2024-06-14 DOI: 10.1146/annurev-physchem-070723-035427
Aditi Khirbat, Oded Nahor, Sara Marina Barbier, Artem Levitsky, Jaime Martín, Gitti Frey, Natalie Stingelin
{"title":"Understanding Organic Photovoltaic Materials Using Simple Thermal Analysis Methodologies.","authors":"Aditi Khirbat, Oded Nahor, Sara Marina Barbier, Artem Levitsky, Jaime Martín, Gitti Frey, Natalie Stingelin","doi":"10.1146/annurev-physchem-070723-035427","DOIUrl":"10.1146/annurev-physchem-070723-035427","url":null,"abstract":"<p><p>Large strides have been made in designing an ever-increasing set of modern organic materials of high functionality and thus, often, of high complexity, including semiconducting polymers, organic ferroelectrics, light-emitting small molecules, and beyond. Here, we review how broadly applied thermal analysis methodologies, especially differential scanning calorimetry, can be utilized to provide unique information on the assembly and solid-state structure of this extensive class of materials, as well as the phase behavior of intrinsically intricate multicomponent systems. Indeed, highly relevant insights can be gained that are useful, e.g., for further materials-discovery activities and the establishment of reliable processing protocols, in particular if combined with X-ray diffraction techniques, spectroscopic tools, and scanning electron microscopy enabled by vapor-phase infiltration staining. We, hence, illustrate that insights far richer than simple melting point- and glass-transition identification can be obtained with differential scanning calorimetry, rendering it a critical methodology to understand complex matter, including functional macromolecules and blends.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-Macromolecule Studies of Eukaryotic Genomic Maintenance. 真核生物基因组维护的单分子研究。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2024-06-01 Epub Date: 2024-06-14 DOI: 10.1146/annurev-physchem-090722-010601
Sergei Rudnizky, Peter J Murray, Clara H Wolfe, Taekjip Ha
{"title":"Single-Macromolecule Studies of Eukaryotic Genomic Maintenance.","authors":"Sergei Rudnizky, Peter J Murray, Clara H Wolfe, Taekjip Ha","doi":"10.1146/annurev-physchem-090722-010601","DOIUrl":"10.1146/annurev-physchem-090722-010601","url":null,"abstract":"<p><p>Genomes are self-organized and self-maintained as long, complex macromolecules of chromatin. The inherent heterogeneity, stochasticity, phase separation, and chromatin dynamics of genome operation make it challenging to study genomes using ensemble methods. Various single-molecule force-, fluorescent-, and sequencing-based techniques rooted in different disciplines have been developed to fill critical gaps in the capabilities of bulk measurements, each providing unique, otherwise inaccessible, insights into the structure and maintenance of the genome. Capable of capturing molecular-level details about the organization, conformational changes, and packaging of genetic material, as well as processive and stochastic movements of maintenance factors, a single-molecule toolbox provides an excellent opportunity for collaborative research to understand how genetic material functions in health and malfunctions in disease. In this review, we discuss novel insights brought to genomic sciences by single-molecule techniques and their potential to continue to revolutionize the field-one molecule at a time.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139929662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Insights into Chemical Reactions at Aqueous Aerosol Interfaces. 水性气溶胶界面化学反应的分子洞察。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2024-06-01 Epub Date: 2024-06-14 DOI: 10.1146/annurev-physchem-083122-121620
David T Limmer, Andreas W Götz, Timothy H Bertram, Gilbert M Nathanson
{"title":"Molecular Insights into Chemical Reactions at Aqueous Aerosol Interfaces.","authors":"David T Limmer, Andreas W Götz, Timothy H Bertram, Gilbert M Nathanson","doi":"10.1146/annurev-physchem-083122-121620","DOIUrl":"10.1146/annurev-physchem-083122-121620","url":null,"abstract":"<p><p>Atmospheric aerosols facilitate reactions between ambient gases and dissolved species. Here, we review our efforts to interrogate the uptake of these gases and the mechanisms of their reactions both theoretically and experimentally. We highlight the fascinating behavior of N<sub>2</sub>O<sub>5</sub> in solutions ranging from pure water to complex mixtures, chosen because its aerosol-mediated reactions significantly impact global ozone, hydroxyl, and methane concentrations. As a hydrophobic, weakly soluble, and highly reactive species, N<sub>2</sub>O<sub>5</sub> is a sensitive probe of the chemical and physical properties of aerosol interfaces. We employ contemporary theory to disentangle the fate of N<sub>2</sub>O<sub>5</sub> as it approaches pure and salty water, starting with adsorption and ending with hydrolysis to HNO<sub>3</sub>, chlorination to ClNO<sub>2</sub>, or evaporation. Flow reactor and gas-liquid scattering experiments probe even greater complexity as added ions, organic molecules, and surfactants alter the interfacial composition and reaction rates. Together, we reveal a new perspective on multiphase chemistry in the atmosphere.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信