Reaction Coordinates Are Optimal Channels of Energy Flow.

IF 11.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Ao Ma, Huiyu Li
{"title":"Reaction Coordinates Are Optimal Channels of Energy Flow.","authors":"Ao Ma, Huiyu Li","doi":"10.1146/annurev-physchem-082423-010652","DOIUrl":null,"url":null,"abstract":"<p><p>Reaction coordinates (RCs) are the few essential coordinates of a protein that control its functional processes, such as allostery, enzymatic reaction, and conformational change. They are critical for understanding protein function and provide optimal enhanced sampling of protein conformational changes and states. Since the pioneering work in the late 1990s, identifying the correct and objectively provable RCs has been a central topic in molecular biophysics and chemical physics. This review summarizes the major advances in identifying RCs over the past 25 years, focusing on methods aimed at finding RCs that meet the rigorous committor criterion, widely accepted as the true RCs. Importantly, the newly developed physics-based energy flow theory and generalized work functional method provide a general and rigorous approach for identifying true RCs, revealing their physical nature as the optimal channels of energy flow in biomolecules.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-082423-010652","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reaction coordinates (RCs) are the few essential coordinates of a protein that control its functional processes, such as allostery, enzymatic reaction, and conformational change. They are critical for understanding protein function and provide optimal enhanced sampling of protein conformational changes and states. Since the pioneering work in the late 1990s, identifying the correct and objectively provable RCs has been a central topic in molecular biophysics and chemical physics. This review summarizes the major advances in identifying RCs over the past 25 years, focusing on methods aimed at finding RCs that meet the rigorous committor criterion, widely accepted as the true RCs. Importantly, the newly developed physics-based energy flow theory and generalized work functional method provide a general and rigorous approach for identifying true RCs, revealing their physical nature as the optimal channels of energy flow in biomolecules.

反应坐标(RC)是控制蛋白质功能过程(如异构、酶反应和构象变化)的几个基本坐标。它们对于了解蛋白质的功能至关重要,并为蛋白质构象变化和状态提供最佳的增强采样。自 20 世纪 90 年代末的开创性工作以来,识别正确且可客观证明的 RC 一直是分子生物物理学和化学物理学的核心课题。本综述总结了过去 25 年在识别 RC 方面取得的主要进展,重点介绍了旨在找到符合严格的承诺者标准的 RC 的方法,这些标准已被广泛接受为真正的 RC。重要的是,新开发的基于物理学的能量流理论和广义功函数方法为识别真正的 RC 提供了一种通用而严格的方法,揭示了它们作为生物分子中能量流最佳通道的物理本质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.00
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信