Annual review of physical chemistry最新文献

筛选
英文 中文
Memory and Friction: From the Nanoscale to the Macroscale. 记忆与摩擦:从纳米尺度到宏观尺度。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-04-01 Epub Date: 2025-02-14 DOI: 10.1146/annurev-physchem-082423-031037
Benjamin A Dalton, Anton Klimek, Henrik Kiefer, Florian N Brünig, Hélène Colinet, Lucas Tepper, Amir Abbasi, Roland R Netz
{"title":"Memory and Friction: From the Nanoscale to the Macroscale.","authors":"Benjamin A Dalton, Anton Klimek, Henrik Kiefer, Florian N Brünig, Hélène Colinet, Lucas Tepper, Amir Abbasi, Roland R Netz","doi":"10.1146/annurev-physchem-082423-031037","DOIUrl":"10.1146/annurev-physchem-082423-031037","url":null,"abstract":"<p><p>Friction is a phenomenon that manifests across all spatial and temporal scales, from the molecular to the macroscopic scale. It describes the dissipation of energy from the motion of particles or abstract reaction coordinates and arises in the transition from a detailed molecular-level description to a simplified, coarse-grained model. It has long been understood that time-dependent (non-Markovian) friction effects are critical for describing the dynamics of many systems, but that they are notoriously difficult to evaluate for complex physical, chemical, and biological systems. In recent years, the development of advanced numerical friction extraction techniques and methods to simulate the generalized Langevin equation has enabled exploration of the role of time-dependent friction across all scales. We discuss recent applications of these friction extraction techniques and the growing understanding of the role of friction in complex equilibrium and nonequilibrium dynamic many-body systems.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"431-454"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vibrational Sum Frequency Generation Spectroscopy Study of Nanoscale to Mesoscale Polarity and Orientation of Crystalline Biopolymers in Natural Materials. 天然材料中结晶生物聚合物纳米尺度到中尺度极性和取向的振动和频率产生光谱研究。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-04-01 Epub Date: 2025-02-19 DOI: 10.1146/annurev-physchem-082423-125535
Jongcheol Lee, Jihyeong Ryu, Juseok Choi, Inseok Chae, Seong H Kim
{"title":"Vibrational Sum Frequency Generation Spectroscopy Study of Nanoscale to Mesoscale Polarity and Orientation of Crystalline Biopolymers in Natural Materials.","authors":"Jongcheol Lee, Jihyeong Ryu, Juseok Choi, Inseok Chae, Seong H Kim","doi":"10.1146/annurev-physchem-082423-125535","DOIUrl":"10.1146/annurev-physchem-082423-125535","url":null,"abstract":"<p><p>As a nonlinear optical process, sum frequency generation (SFG) requires noncentrosymmetry across multiple length scales, ranging from individual molecular functional groups to their arrangements in space. This principle makes SFG not only intrinsically sensitive to molecular species at surfaces but also useful for studying 3D structures of crystalline biopolymers in natural materials. Examples of such biopolymers are cellulose, starch, and chitin in the polysaccharide family and collagen, silk, and keratin in the fibrous protein family. These biopolymers are noncentrosymmetric at multiple length scales, with chirality at the molecular scale, unit cell structure at the nanoscale, and crystallite orientation and polarity at the mesoscale; thus, they are SFG active. In this review, we describe how SFG can be used to determine nano- to mesoscale polarity and orientational orders of crystalline biopolymers interspersed in natural materials containing the same or similar biopolymers in amorphous states, which cannot be obtained with other characterization methods.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"405-430"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143456804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating Superrotors and Dynamics of Molecules in Extremely High Rotational States. 产生超级转子和分子在极高旋转状态下的动力学。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-04-01 Epub Date: 2025-02-14 DOI: 10.1146/annurev-physchem-082423-012311
Amy S Mullin
{"title":"Generating Superrotors and Dynamics of Molecules in Extremely High Rotational States.","authors":"Amy S Mullin","doi":"10.1146/annurev-physchem-082423-012311","DOIUrl":"10.1146/annurev-physchem-082423-012311","url":null,"abstract":"<p><p>The optical centrifuge was demonstrated in 2000 as a tool for preparing ensembles of molecules in extreme rotational states. Highly rotationally excited molecules, so-called superrotors, are observed as products of photodissociation and molecular collisions, in high-temperature environments in the atmospheres of Earth and exoplanets, and in the interstellar medium. Traditional optical excitation is limited to small changes in rotation, limiting experiments to relatively low rotational states. In this review, I discuss the use of a tunable optical centrifuge to prepare molecules in selected ranges of excited rotational states and investigations of their collisional relaxation using state-resolved polarization-sensitive transient IR probing. I examine the decay dynamics of population, alignment, and translational energy release, focusing on experimental results, and compare them with simulations that overestimate observed relaxation rates. A clear picture of near-resonant and nonresonant energy transfer pathways emerges and establishes the means to distinguish superrotor and bath collision products.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"357-377"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Ozone Photochemistry: A Lambda Doublet Propensity and Spin-Forbidden Channels. 臭氧光化学的最新进展:Lambda双重态倾向和自旋禁止通道。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-04-01 Epub Date: 2025-01-21 DOI: 10.1146/annurev-physchem-082423-124349
Megan N Aardema, Simon W North
{"title":"Recent Advances in Ozone Photochemistry: A Lambda Doublet Propensity and Spin-Forbidden Channels.","authors":"Megan N Aardema, Simon W North","doi":"10.1146/annurev-physchem-082423-124349","DOIUrl":"10.1146/annurev-physchem-082423-124349","url":null,"abstract":"<p><p>Recent studies on ozone photodissociation in the Hartley and Huggins bands have provided new insights into the dissociation dynamics and product state distributions. A Λ-doublet propensity in the photodissociation has been identified through experiment and theory as the origin of the oscillatory O<sub>2</sub>(a1Δ<sub>g</sub>) rotational distributions and provides a promising diagnostic for determining the relative contributions of 3<i>A</i>' and 3<i>A</i>″ states in Huggins band spin-forbidden processes. Recent experiments on spin-forbidden dissociation have provided detailed information about the vibrational and rotational distributions of the O<sub>2</sub> products and the branching ratios between the O<sub>2</sub> electronic states, serving as a motivation for high-level theory.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"39-56"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Femtosecond Extreme Ultraviolet Absorption Spectroscopy of Transition Metal Complexes. 过渡金属配合物的飞秒极紫外吸收光谱。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-04-01 Epub Date: 2025-02-14 DOI: 10.1146/annurev-physchem-082720-031657
Josh Vura-Weis
{"title":"Femtosecond Extreme Ultraviolet Absorption Spectroscopy of Transition Metal Complexes.","authors":"Josh Vura-Weis","doi":"10.1146/annurev-physchem-082720-031657","DOIUrl":"10.1146/annurev-physchem-082720-031657","url":null,"abstract":"<p><p>In this review, we survey the use of extreme ultraviolet absorption spectroscopy to measure electronic and vibrational dynamics in transition metal complexes. Photons in this 30-100 eV energy range probe 3<i>p</i> → 3<i>d</i> transitions for 3<i>d</i> metals and 4<i>f</i>, 5<i>p</i> → 5<i>d</i> transitions in 5<i>d</i> metals, and the resulting spectra are sensitive to the spin state, oxidation state, and ligand field of the metal. Furthermore, the energy of the core level depends on the metal, providing elemental specificity. Use of tabletop high-harmonic sources allows these spectra to be measured with femtosecond to attosecond time resolution in a standard laser laboratory, revealing short-lived states in chromophores and photocatalysts that were unresolved using other techniques.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"455-470"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomistic Insights into Elemental Two-Dimensional Materials and Their Heterostructures. 元素二维材料及其异质结构的原子观研究。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-04-01 Epub Date: 2025-01-22 DOI: 10.1146/annurev-physchem-082423-124941
Soumyajit Rajak, Jeremy F Schultz, Linfei Li, Nan Jiang
{"title":"Atomistic Insights into Elemental Two-Dimensional Materials and Their Heterostructures.","authors":"Soumyajit Rajak, Jeremy F Schultz, Linfei Li, Nan Jiang","doi":"10.1146/annurev-physchem-082423-124941","DOIUrl":"10.1146/annurev-physchem-082423-124941","url":null,"abstract":"<p><p>Inspired by the success of graphene, two-dimensional (2D) materials have been at the forefront of advanced (opto-)nanoelectronics and energy-related fields owing to their exotic properties like sizable bandgaps, Dirac fermions, quantum spin Hall states, topological edge states, and ballistic charge carrier transport, which hold promise for various electronic device applications. Emerging main group elemental 2D materials, beyond graphene, are of particular interest due to their unique structural characteristics, ease of synthetic exploration, and superior property tunability. In this review, we present recent advances in atomic-scale studies of elemental 2D materials with an emphasis on synthetic strategies and structural properties. We also discuss the challenges and perspectives regarding the integration of elemental 2D materials into various heterostructures.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"83-102"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Science of Nanostructure Acoustic Vibrations. 纳米结构声学振动科学。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-04-01 Epub Date: 2025-01-22 DOI: 10.1146/annurev-physchem-082423-032529
Cameron Wright, Gregory V Hartland
{"title":"The Science of Nanostructure Acoustic Vibrations.","authors":"Cameron Wright, Gregory V Hartland","doi":"10.1146/annurev-physchem-082423-032529","DOIUrl":"10.1146/annurev-physchem-082423-032529","url":null,"abstract":"<p><p>Ultrafast excitation of nanoparticles can excite the acoustic vibrational modes of the structure that correlate with the expansion coordinates. These modes are frequently seen in transient absorption experiments on metal nanoparticle samples and occasionally for semiconductors. The aim of this review is to give an overview of the physical chemistry of nanostructure acoustic vibrations. The issues discussed include the excitation mechanism, how to calculate the mode frequencies using continuum mechanics, and the factors that control vibrational damping. Recent results that demonstrate that the high frequencies inherent to the acoustic modes of nanomaterials trigger a viscoelastic response in surrounding liquids are also discussed, as well as vibrational coupling between nanostructures and mode hybridization within the nanostructures. Mode hybridization provides a way of manipulating the lifetimes of the acoustic modes, which is potentially useful for applications such as mass sensing.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"57-81"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasmon-Driven Chemistry. Plasmon-Driven化学。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-04-01 DOI: 10.1146/annurev-physchem-082423-031814
Arghya Sarkar, MaKenna M Koble, Renee R Frontiera
{"title":"Plasmon-Driven Chemistry.","authors":"Arghya Sarkar, MaKenna M Koble, Renee R Frontiera","doi":"10.1146/annurev-physchem-082423-031814","DOIUrl":"https://doi.org/10.1146/annurev-physchem-082423-031814","url":null,"abstract":"<p><p>Plasmonic nanomaterials are promising photocatalysts due to their large optical cross sections and facile generation of nanoscale hotspot regions. They have been used to drive a range of photochemical reactions, including H<sub>2</sub> dissociation, CO<sub>2</sub> reduction, and ammonia synthesis, offering an exciting approach to light-driven chemistry. Deepening our understanding of how energy can be controllably transferred from the plasmonic nanomaterial to proximal reactants should lead to improvements in the efficiency and selectivity in plasmonic photocatalysis. Here we provide a comprehensive overview of plasmonic properties and explore different energy partitioning pathways. We focus on the importance of mapping molecular potential energy landscapes to understand reactivity and describe recent advancements in spectroscopic techniques, such as ultrafast surface-enhanced Raman spectroscopy, electron microscopy, and electrochemistry, that can aid in understanding how plasmonic nanomaterials can be used to shape potential energy surfaces and modify chemical outcomes. Additionally, we explore innovative hybrid plasmonic nanostructures such as antenna-reactor complexes, plasmonic single-atom catalysts, plasmonic picocavities, and chiral plasmonic substrates, all of which show great promise in advancing the field of plasmon-driven chemistry.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"76 1","pages":"129-152"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143967357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Singlet-Triplet Inversion. Singlet-Triplet反演。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-04-01 DOI: 10.1146/annurev-physchem-082423-120310
Liam Wrigley, Cody W Schlenker
{"title":"Singlet-Triplet Inversion.","authors":"Liam Wrigley, Cody W Schlenker","doi":"10.1146/annurev-physchem-082423-120310","DOIUrl":"https://doi.org/10.1146/annurev-physchem-082423-120310","url":null,"abstract":"<p><p>The inversion of singlet and triplet states is a rare phenomenon, where, in opposition to Hund's first rule, singlet electronic states are stabilized relative to their triplet counterparts. The recent discovery of organic molecules exhibiting this inversion presents exciting new technological opportunities, such as addressing stability issues in organic light-emitting diodes (OLEDs). In this review, we describe fundamental molecular properties that can yield singlet-triplet inversion, generally ascribed to a phenomenon known as dynamic spin polarization. We discuss the systems in which singlet-triplet inversion was theoretically proposed, experimentally verified, and first implemented in an OLED device. We highlight key insights from the extensive computational work being carried out to understand the intricacies of these systems. Finally, we consider the outlook for future inverted singlet-triplet (IST) emitters.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"76 1","pages":"329-355"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143974210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Odyssey in the Wonderland of Chemical Dynamics. 奥德赛化学动力学的仙境。
IF 11.7 1区 化学
Annual review of physical chemistry Pub Date : 2025-04-01 Epub Date: 2025-01-22 DOI: 10.1146/annurev-physchem-082423-035645
Kopin Liu
{"title":"Odyssey in the Wonderland of Chemical Dynamics.","authors":"Kopin Liu","doi":"10.1146/annurev-physchem-082423-035645","DOIUrl":"10.1146/annurev-physchem-082423-035645","url":null,"abstract":"<p><p>This is a recollection of my scientific trajectory. When I look back, I consider myself to be very fortunate for being able to do something I love and on topics of my own will. I am not a competitive person and tend to shy away from the limelight. Nonetheless, I survived in my profession and eventually made some modest contributions, which are beyond what I would have expected. We often forget about the human aspect of scientific endeavor. After all, science is done by individuals; humans have emotions and make mistakes. The frustrations of failures, the joys of finding problems and solutions to them, and the passion for fulfilling curiosity are all parts of this endeavor. Throughout the years, many people-mentors, students, postdocs, collaborators, and colleagues-have accompanied me in this exciting and fruitful journey, for which I am deeply grateful and feel very lucky to have them.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"1-17"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信