记忆与摩擦:从纳米尺度到宏观尺度。

IF 11.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Benjamin A Dalton, Anton Klimek, Henrik Kiefer, Florian N Brünig, Hélène Colinet, Lucas Tepper, Amir Abbasi, Roland R Netz
{"title":"记忆与摩擦:从纳米尺度到宏观尺度。","authors":"Benjamin A Dalton, Anton Klimek, Henrik Kiefer, Florian N Brünig, Hélène Colinet, Lucas Tepper, Amir Abbasi, Roland R Netz","doi":"10.1146/annurev-physchem-082423-031037","DOIUrl":null,"url":null,"abstract":"<p><p>Friction is a phenomenon that manifests across all spatial and temporal scales, from the molecular to the macroscopic scale. It describes the dissipation of energy from the motion of particles or abstract reaction coordinates and arises in the transition from a detailed molecular-level description to a simplified, coarse-grained model. It has long been understood that time-dependent (non-Markovian) friction effects are critical for describing the dynamics of many systems, but that they are notoriously difficult to evaluate for complex physical, chemical, and biological systems. In recent years, the development of advanced numerical friction extraction techniques and methods to simulate the generalized Langevin equation has enabled exploration of the role of time-dependent friction across all scales. We discuss recent applications of these friction extraction techniques and the growing understanding of the role of friction in complex equilibrium and nonequilibrium dynamic many-body systems.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memory and Friction: From the Nanoscale to the Macroscale.\",\"authors\":\"Benjamin A Dalton, Anton Klimek, Henrik Kiefer, Florian N Brünig, Hélène Colinet, Lucas Tepper, Amir Abbasi, Roland R Netz\",\"doi\":\"10.1146/annurev-physchem-082423-031037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Friction is a phenomenon that manifests across all spatial and temporal scales, from the molecular to the macroscopic scale. It describes the dissipation of energy from the motion of particles or abstract reaction coordinates and arises in the transition from a detailed molecular-level description to a simplified, coarse-grained model. It has long been understood that time-dependent (non-Markovian) friction effects are critical for describing the dynamics of many systems, but that they are notoriously difficult to evaluate for complex physical, chemical, and biological systems. In recent years, the development of advanced numerical friction extraction techniques and methods to simulate the generalized Langevin equation has enabled exploration of the role of time-dependent friction across all scales. We discuss recent applications of these friction extraction techniques and the growing understanding of the role of friction in complex equilibrium and nonequilibrium dynamic many-body systems.</p>\",\"PeriodicalId\":7967,\"journal\":{\"name\":\"Annual review of physical chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-physchem-082423-031037\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-082423-031037","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

从分子到宏观尺度,摩擦是一种跨越所有空间和时间尺度的现象。它描述了粒子运动或抽象反应坐标的能量耗散,并出现在从详细的分子水平描述到简化的粗粒度模型的过渡中。长期以来,人们一直认为,时间依赖(非马尔可夫)摩擦效应对于描述许多系统的动力学至关重要,但对于复杂的物理、化学和生物系统来说,它们是出了名的难以评估的。近年来,先进的数值摩擦提取技术和模拟广义朗之万方程的方法的发展,使得探索时间相关摩擦在所有尺度上的作用成为可能。我们讨论了这些摩擦提取技术的最新应用,以及对摩擦在复杂平衡和非平衡动态多体系统中的作用的日益加深的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Memory and Friction: From the Nanoscale to the Macroscale.

Friction is a phenomenon that manifests across all spatial and temporal scales, from the molecular to the macroscopic scale. It describes the dissipation of energy from the motion of particles or abstract reaction coordinates and arises in the transition from a detailed molecular-level description to a simplified, coarse-grained model. It has long been understood that time-dependent (non-Markovian) friction effects are critical for describing the dynamics of many systems, but that they are notoriously difficult to evaluate for complex physical, chemical, and biological systems. In recent years, the development of advanced numerical friction extraction techniques and methods to simulate the generalized Langevin equation has enabled exploration of the role of time-dependent friction across all scales. We discuss recent applications of these friction extraction techniques and the growing understanding of the role of friction in complex equilibrium and nonequilibrium dynamic many-body systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
28.00
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信