Memory and Friction: From the Nanoscale to the Macroscale.

IF 11.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Benjamin A Dalton, Anton Klimek, Henrik Kiefer, Florian N Brünig, Hélène Colinet, Lucas Tepper, Amir Abbasi, Roland R Netz
{"title":"Memory and Friction: From the Nanoscale to the Macroscale.","authors":"Benjamin A Dalton, Anton Klimek, Henrik Kiefer, Florian N Brünig, Hélène Colinet, Lucas Tepper, Amir Abbasi, Roland R Netz","doi":"10.1146/annurev-physchem-082423-031037","DOIUrl":null,"url":null,"abstract":"<p><p>Friction is a phenomenon that manifests across all spatial and temporal scales, from the molecular to the macroscopic scale. It describes the dissipation of energy from the motion of particles or abstract reaction coordinates and arises in the transition from a detailed molecular-level description to a simplified, coarse-grained model. It has long been understood that time-dependent (non-Markovian) friction effects are critical for describing the dynamics of many systems, but that they are notoriously difficult to evaluate for complex physical, chemical, and biological systems. In recent years, the development of advanced numerical friction extraction techniques and methods to simulate the generalized Langevin equation has enabled exploration of the role of time-dependent friction across all scales. We discuss recent applications of these friction extraction techniques and the growing understanding of the role of friction in complex equilibrium and nonequilibrium dynamic many-body systems.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-082423-031037","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Friction is a phenomenon that manifests across all spatial and temporal scales, from the molecular to the macroscopic scale. It describes the dissipation of energy from the motion of particles or abstract reaction coordinates and arises in the transition from a detailed molecular-level description to a simplified, coarse-grained model. It has long been understood that time-dependent (non-Markovian) friction effects are critical for describing the dynamics of many systems, but that they are notoriously difficult to evaluate for complex physical, chemical, and biological systems. In recent years, the development of advanced numerical friction extraction techniques and methods to simulate the generalized Langevin equation has enabled exploration of the role of time-dependent friction across all scales. We discuss recent applications of these friction extraction techniques and the growing understanding of the role of friction in complex equilibrium and nonequilibrium dynamic many-body systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.00
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信