{"title":"Femtosecond Extreme Ultraviolet Absorption Spectroscopy of Transition Metal Complexes.","authors":"Josh Vura-Weis","doi":"10.1146/annurev-physchem-082720-031657","DOIUrl":null,"url":null,"abstract":"<p><p>In this review, we survey the use of extreme ultraviolet absorption spectroscopy to measure electronic and vibrational dynamics in transition metal complexes. Photons in this 30-100 eV energy range probe 3<i>p</i>$\\mbox{\\MVRightarrow}$ 3<i>d</i> transitions for 3<i>d</i> metals and 4<i>f</i>, 5<i>p</i>$\\mbox{\\MVRightarrow}$ 5<i>d</i> transitions in 5<i>d</i> metals, and the resulting spectra are sensitive to the spin state, oxidation state, and ligand field of the metal. Furthermore, the energy of the core level depends on the metal, providing elemental specificity. Use of tabletop high-harmonic sources allows these spectra to be measured with femtosecond to attosecond time resolution in a standard laser laboratory, revealing short-lived states in chromophores and photocatalysts that were unresolved using other techniques.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-082720-031657","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this review, we survey the use of extreme ultraviolet absorption spectroscopy to measure electronic and vibrational dynamics in transition metal complexes. Photons in this 30-100 eV energy range probe 3p$\mbox{\MVRightarrow}$ 3d transitions for 3d metals and 4f, 5p$\mbox{\MVRightarrow}$ 5d transitions in 5d metals, and the resulting spectra are sensitive to the spin state, oxidation state, and ligand field of the metal. Furthermore, the energy of the core level depends on the metal, providing elemental specificity. Use of tabletop high-harmonic sources allows these spectra to be measured with femtosecond to attosecond time resolution in a standard laser laboratory, revealing short-lived states in chromophores and photocatalysts that were unresolved using other techniques.
期刊介绍:
The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.