Physical Considerations in Memory and Information Storage.

IF 11.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Matthew Du, Agnish Kumar Behera, Suriyanarayanan Vaikuntanathan
{"title":"Physical Considerations in Memory and Information Storage.","authors":"Matthew Du, Agnish Kumar Behera, Suriyanarayanan Vaikuntanathan","doi":"10.1146/annurev-physchem-083122-010308","DOIUrl":null,"url":null,"abstract":"<p><p>Information is an important resource. Storing and retrieving information faithfully are huge challenges and many methods have been developed to understand the principles behind robust information processing. In this review, we focus on information storage and retrieval from the perspective of energetics, dynamics, and statistical mechanics. We first review the Hopfield model of associative memory, the classic energy-based model of memory. We then discuss generalizations and physical realizations of the Hopfield model. Finally, we highlight connections to energy-based neural networks used in deep learning. We hope this review inspires new directions along the lines of information storage and retrieval in physical systems.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-083122-010308","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Information is an important resource. Storing and retrieving information faithfully are huge challenges and many methods have been developed to understand the principles behind robust information processing. In this review, we focus on information storage and retrieval from the perspective of energetics, dynamics, and statistical mechanics. We first review the Hopfield model of associative memory, the classic energy-based model of memory. We then discuss generalizations and physical realizations of the Hopfield model. Finally, we highlight connections to energy-based neural networks used in deep learning. We hope this review inspires new directions along the lines of information storage and retrieval in physical systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.00
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信