Matthew Du, Agnish Kumar Behera, Suriyanarayanan Vaikuntanathan
{"title":"Physical Considerations in Memory and Information Storage.","authors":"Matthew Du, Agnish Kumar Behera, Suriyanarayanan Vaikuntanathan","doi":"10.1146/annurev-physchem-083122-010308","DOIUrl":null,"url":null,"abstract":"<p><p>Information is an important resource. Storing and retrieving information faithfully are huge challenges and many methods have been developed to understand the principles behind robust information processing. In this review, we focus on information storage and retrieval from the perspective of energetics, dynamics, and statistical mechanics. We first review the Hopfield model of associative memory, the classic energy-based model of memory. We then discuss generalizations and physical realizations of the Hopfield model. Finally, we highlight connections to energy-based neural networks used in deep learning. We hope this review inspires new directions along the lines of information storage and retrieval in physical systems.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-083122-010308","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Information is an important resource. Storing and retrieving information faithfully are huge challenges and many methods have been developed to understand the principles behind robust information processing. In this review, we focus on information storage and retrieval from the perspective of energetics, dynamics, and statistical mechanics. We first review the Hopfield model of associative memory, the classic energy-based model of memory. We then discuss generalizations and physical realizations of the Hopfield model. Finally, we highlight connections to energy-based neural networks used in deep learning. We hope this review inspires new directions along the lines of information storage and retrieval in physical systems.
期刊介绍:
The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.